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MOTIVATIONS

» The LHC target luminosity is 3000 fb~, this will reduce the
experimental uncertainty
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» The LHC target luminosity is 3000 fb~!, this will reduce the
experimental uncertainty
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MOTIVATIONS

The LHC target luminosity is 3000 fo?, this will reduce the
experimental uncertainty

Beginning of transition from observation to precise
measurement has just started

Differential cross section means flexibility for phenomenology
(e.g. compute decays)

Crucial to providing precise predictions to test and find new
physics!

Check stabilization of the perturbative expansion of the
rapidity distribution, as for the inclusive N3LO .
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MOTIVATIONS

Hard challenge!

ETH:iirich

Differential translate in more variables, this becomes a
challenge when manipulating analytic expressions

Simple reduction to master integrals will fail. The Coefficients
of the reductions become massive.

Need to use new techniques compared to the inclusive at the
same order.
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PRODUCTION CHANNELS

ggF VH
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INEINITE TOP MASS

The process that we are looking at is the Higgs production via
gluon fusion, computed in the infinite top mass limit.

Effective theory:

—— EFT
B JJ}«@" :
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INEINITE TOP MASS

The process that we are looking at is the Higgs production via
gluon fusion, computed in the infinite top mass limit.

Effective theory:

- EFT
B J_}}’@’i )

Remove one loop!
Good approximation: NVEO ~ 0.7%

To be combined with mass corrections, EWK corrections,
etc...
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HGGS DIFFERENTIAL

We want to compute the differential cross section for the Higgs
production:

The is integrated out, we are left with the partonic
Higgs-differential x-section:

2 ~
d°GjjsH4x

~ | den|M; 2
dep% / n’ I/—)H+X‘
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HGGS DIFFERENTIAL

We want to compute the differential cross section for the Higgs
production:

The is integrated out, we are left with the partonic
Higgs-differential x-section:

ouon dGjHix _ / 2 PGjHix
dYdpZ
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RAPIDITY DISTRBUTION
The general form of the rapidity distribution can be written as:

d R 1

GIPPoHAX _ 5§ / dx Ox2dy1dyafi(y1)f;(V2)d (T —X1X2Y1Y2)
" 0
I

dy
X O Y—*IO 1y1>>”"X7X )
( g( X2Y2 U( ! 2)

Where we define the partonic cross section

3

mj(X1,X2) = Z( )n,, (X1,X2).

k=0
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INTERFERENCES

Many contributions to be considered:

VVV + Born: RRR + RRR:

VVR + R: VRR + RR:
S

<]
2

3]

5

R -

X
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ROAD TO COMPUTATION

One of the standard tools to be used to resize the magnitude of
the problem is to identify by means of Integration By Part (IBP)
identities a set of Master integrals to span the space of the scalar
integrals that appear in the computation:

F (S,‘j, 6) = Cj (S,’j, 6) M,‘ (S,’j, 6)

cj: Coefficient that depends on the external kinematics
together with the dimensional regulator e.

Rational Functions

M;: Master integrals (i.e. scalar integrals) that depend on the
external kinematics together with the dimensional regulator.
Special Functions (Multiple Polylogarithms, Elliptic
Functions,...)
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BP

We can reduce the Integrals to be computed to Master Integrals
through the Laporta algorithm. However, it’s not that simple.
Differential means more variables in the final answer:

Symbolic reduction using Laporta Algorithm: FAST

Algebraic evaluation of the reduction coefficients: SLOW
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BP

Reduction coefficients are stored in trees:
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BP

We can reduce the Integrals to be computed to Master Integrals
through the Laporta algorithm. However, it’s not that simple.
Differential means more variables in the final answer:

Symbolic reduction using Laporta Algorithm: FAST

Algebraic evaluation of the reduction coefficients: SLOW

Solution: give up ?
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BP

We can reduce the Integrals to be computed to Master Integrals
through the Laporta algorithm. However, it’s not that simple.
Differential means more variables in the final answer:

Symbolic reduction using Laporta Algorithm: FAST

Algebraic evaluation of the reduction coefficients: SLOW

Solution: Evaluate the coefficients numericallys and then infer
from these evaluations the analytic expression.
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RATONAL FUNCTION RECONSTRUCTION

With enough evaluations, it's always possible to understand the
structure of any rational function.

f(t) o= PO

= — rank(p) =rn, rank(q) = rq.

q(t)’

With n = 2max{rp, rq} + 1 evaluations we can reconstruct the
function above by means of Thiele’s interpolation formula:

Pt)_a (t—t)

=l _—a +

q(t) ar+ (t(tti)t)
@t o
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MULTI-VARIABLE FUNCTIONS

There is no general way to reconstruct a rational function with

more than one variable because of non-trivial singularities and
accidental cancellations.

It's possible if we assume the following canonical form:

ly Q
an:O apXP

f(X1,....XN) =
( 1y 0oy N) 1+Z’;:1quﬁq’
N i
(0%
X = HXI. P, ap = {a},, ...,a’g}, lap| = p.
i=1
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MULTI-VARIABLE FUNCTIONS

Algorithm (sketch):

1 Pick a set of random points {x?, ..., x{} where f(x°) is not
singular

2 Rescale them by t and reconstruct g(t) := f(t - x{, ...t - x3)

3 Now the coefficients a, and by are polynomial in
{x1,....xn} evaluated at {x?, ..., x{}

4 Repeat point 1 and 2 to obtain enough evaluations to
reconstruct the polynomial functions a, and byg.
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Let’

o
o
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EXAMPLE

s try to reconstruct the function: f(x,y) := 7.

We do the reconstruction for (xo,yo) = (1, 1) by evaluating

f(txo, tyo) fort =1,2,3. The solutionis:  f(txo, tyo) = 125

We pick a new set of points (x1,y1) = (1,2) and we evaluate

f(tx,ty;) fort = 1,2,3. The solutionis:  f(txi,ty1) = {25

We now know that our final answer looks like:

cx,y)t

f(tx,ty) := TTdx i

where c(x,y) and d(x,y) are homogeneous functions in x
and y. From the two reconstructions we have:

)
2)

1,1) =2 d(1,
1 1

L =cx,y)=x+ !
2)=3 IR a2 1

15/34
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PROBLEMS

In order to be able to recover the structure of the
rational(polynomial) functions we need to work over rational
numbers of arbitrary precision.

— Numbers in intermediate steps are BIG
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PROBLEMS

In order to be able to recover the structure of the
rational(polynomial) functions we need to work over rational
numbers of arbitrary precision.

— Numbers in intermediate steps are BIG

Having to deal with such numbers will slow down the
computation and combined with the massive humber of
evaluation needed for the 4-variable reconstruction leads to
unmanageable computing times.

Another dead end?
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PROBLEMS
In order to be able to recover the structure of the
rational(polynomial) functions we need to work over rational
numbers of arbitrary precision.

— Numbers in intermediate steps are BIG

Having to deal with such numbers will slow down the
computation and combined with the massive number of
evaluation needed for the 4-variable reconstruction leads to
unmanageable computing times.

Another dead end?

NO.
Still possible to evaluate in short time if we
work with machine size integers!
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FINTE FIELD

Well known techniques that are just waiting to be used:
— CRT (Sun Tsu, 3rd-century ad)
— RR (Wang, 1981-1982)
Becoming more and more popular in high energy physics
since their first applications. [A. von Manteuffel and R. M. Schabinger '15]
[T. Peraro ’15]
Easily parallelizable

Great improvement in performances especially because the
final answer contains relatively small numbers.
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FINTE FIELD

Well known techniques that are just waiting to be used:
— CRT (Sun Tsu, 3rd-century ad)
— RR (Wang, 1981-1982)

Becoming more and more popular in high energy physics
since their first applica‘[ions. [A. von Manteuffel and R. M. Schabinger *15]

[T. Peraro ’15]
Easily parallelizable

Great improvement in performances especially because the
final answer contains relatively small numbers.

e.g: If the coefficients are of machine size (32bits) we require
just three evaluations:

my = 5817113, my = 4869863, ms = 2015177
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RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Theorem

(u17u27 -7Ur) €
$€Q Limy X Ly % ... X N
+ -
\-/ Zm,
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RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Solve in Zp, Theorem

)
(u1,ug,...,ur) €

X
$€Q Zm,mezx,,.x3+:
\./Z’m

ETHziirich 18/34 DPHYS



RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Solve in Zm, Theorem

)
(ur,u9,...,up) €

X
$€Q Zm,mezx,,.x3+:
\./Z’m
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RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Solve in Zpm, Theorem

T
(u1,u9,...,ur) €

X
$€Q Zm,mezx,,.x3+:
\./Z’m
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RATIONAL RECONSTRUCTION

RR CRT
Rational Chinese  Remainder
Reconstruction Theorem

(ur,ug, ..., up) € w
2€Q Limy X Ly X oo X 4
\/ L
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RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Theorem

(u17u27 -7Ur) €
$€Q Limy X Ly % ... X N
+ -
\-/ Zm,
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RATIONAL RECONSTRUCTION

u € Zm,
/ o \
RR ) CRT
Rational m > 2max{a?, b} Chinese  Remainder
Reconstruction Theorem

(ur, U2,y up) €
$€Q Limy X Ly % ... X N
+ -
\./ Zm'
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RATIONAL RECONSTRUCTION

N

u € Zm,
m=mymy...m,

RR CRT
Rational Chinese  Remainder
Reconstruction Theorem

(ur, U2,y up) €
4149817891...331287391 7 N/ X X XN
312778916...81273865 m mz e + -
\/ Zmr

ETHziirich 18/34 DPHYS



EXAMPLE

Reconstructed expression with ~ 100’000 non-zero coefficients
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EXAMPLE

Reconstructed expression with ~ 100’000 non-zero coefficients

2m +lt°d3267n — =L
%t9d4;

5 4994 6,5 35 49 74 7
Etdzm+ﬁtdzf :
n> —40t1°m* +40t19m5 440t 10m° —
| 44541041 245 46741071 54,6 *%x,
5+]4—3,t10d3z2 917‘10(13 2m i
3 &twd“ 44 631110[14 dmB 4l
256

"m0 716372277n +1922"m +@z77

N +21011 1y,5 21d1 11,6 +
2249d5 +1057ds 7

;n
= 0
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EXAMPLE

Reconstructed expression with ~ 100’000 non-zero coefficients

ETH:iirich

Worst coefficient for this topology had ~ 30’000’000 non zero
coefficients

Because of the shift this number translate in a higher number
of numerical coefficients that need to be reconstructed

" — (t—to)"

Possible to reconstruct all the coefficients within a week!

19/34
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ROAD TO COMPUTATION |

Computing the analytic result for the analytic rapidity distribution
is a hard challenge!
dGjjH4x
dy
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ROAD TO COMPUTATIONL I

Computing the analytic result for the analytic rapidity distribution
is a hard challenge! Dy,
fl

Ol 2 i
e,

Perform expansion around the productlon threshold. Already
a success for the inclusive N3LO
m2
zZ=1-z=1--"H~
S

Expand to sufficiently higher orders
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PARTON LUMINOSITY

L ax T
L@z) = /T 1 (z7) ' The probability of

producing the Higgs
boson as a function of the
partonic center of mass is
reduced as the energy
moves away from the
threshold

gd

0 01 02 03 04 05 06 07 08 09 1
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THRESHOLD EXPANSION

— Full
— Truncated

o [pb]

-1. 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
Truncation Order
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THRESHOLD EXPANSION

P N WHC3TeV. L —
H MMHT 2014 H H

o [pb]

w
=2
N3LO
o9 [pb]
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I l
i
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L
[
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[
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LHC 13 Tev
F71 S 1 PDF4LHC150
p=125 Gev
-1 0.
[B. Mistlberger *18]
o 10 20 30 40

Truncation Order
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CROSS SECTION EXPANSION

Consider the case where there are only real corrections,
RRR + RRR:

2 p1

Ph
2

» 1
I(p17p27k) = n :
-/,

1
dd; ,
/ P33P35P34P 5P 34P 45
Where pj,..i, = Pi, + - + Pi, and K = Pays.

Threshold limit correspond to the limit where all radiation
produced in association with the Higgs is uniformly soft

. ~2d—6
P345 — ZP234, dP3 —Z7°dds
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CROSS SECTION EXPANSION

Consider the case where there are only real corrections,
RRR + RRR:

I(p1,p2,k) = 221 /<0>+2/<1>+...]

Where p;, i, = Pi, + -+ + Pi, and k = Pays.
Threshold limit correspond to the limit where all radiation
produced in association with the Higgs is uniformly soft

- —2d—6
P345 —ZP234, dP3—Zz7 °dd;

ETH:iirich 23/34 DPHYS



LOOP MOMENUTM

The loop momentum can take arbitrarily small and large values
compared to the parameter z. We need to split the expansion into
different sectors!

AN A’h AL =P, Ay = (I-2ps)?, Ay = (I-p1)?

Az = (I —Zp3 +p2)

EI:V ‘\PZ

Naive expansion only converges for large values of the loop
momentum (Hard sector):

z2l-ps
(/—22/ p3)? PZ( )
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LOOP MOMENUTM

The loop momentum can take arbitrarily small and large values

compared to the parameter z. We need to split the expansion into
different sectors!

/"\* %h Al = /27 Ay = (/—2[)3)2, Ay = (l—p1)2

Az = (I —2zp3 +p2)?

I}

v N
Cq: I%Nz /1-p1N1 Il-pg ~Z

: /%NZ /2-p1 ~Z I2‘p2’\’1
S: /1 ~Z
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THRESHOLD EXPANSION

In dimensional regularization the expression for the partonic cross
section takes the form,

n”) (1, x2) = 0 8(1 = x1)3(1 = xa)

3
+ Z (1 _Xl)flfme (1 _X2)717ne ,,7’5‘3:”7:”) ()(1’)(2)7

nm=1
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THRESHOLD EXPANSION

In dimensional regularization the expression for the partonic cross
section takes the form,

77,5-3)(X1,X2) = ,-53)5(1 —X1)8(1 — X2)

3
+ 37 (1= x) (1 ko) TP (1, x),

nm=1

Different sectors of the loop momentum give rise to different
m ,n exponent
Genuine two loop

m =1 orn =1 are known exactly! « L
contributions
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THRESHOLD EXPANSION

In dimensional regularization the expression for the partonic cross
section takes the form,

ny” (1, X2) = 1 8(1 = x1)8(1 = xa)

3
—1-m —1=n 3.,m,n
+ 0 (=X)L = xo) T P (g, x0),
Z D
nm=1 Distributions Holomorphic

Different sectors of the loop momentum give rise to different
m ,n exponent
Genuine two loop

m =1orn =1 are known exactly! « e
contributions
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DISTRIBUTION

We can extract the divergence by means of the dimensional
regulator e obtaining a combination of distribution, in particular
o-functions and plus-distributions:

—14ae
/dxlx af(x /dl_lae/dlae

_/01 Z [Iog( . X) J F(x)

With f(x) some test function.
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REACHNG BEYOND THRESHOLD EXPANSION

Obtain finite expressions with a suitable mass factorization and
ultraviolet renormalization counter term CT,S?’):

m ni(.?gare (X1,X2) + CTU(.?’) (X1,X2)

(3) — i
o ) =i [

Use the fact that poles in the dimensional regulator e cancel
to impose further constraints on the PCF

Fix most of the logarithmically enhanced terms
Smaller set of expressions that need threshold expansion

ETHziirich 27/34
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MAICH TO THE NCLUSNVE

Integrate over the rapidity to recover the inclusive x-section,

Strong check on the differential partonic cross section

Agreement between the two threshold expansions for all
computed orders!

ETHziirich 28/34
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MATCHNG THE INCLUSIVE

We have 6 terms in the threshold expansion!

Impose conditions to the missing orders in z such that it
matches the inclusive at all orders!

(3),matched (3),app. X1 +X2
M X1.X9) = 1. X1,X PO EEE——
77// ( 1 2) 77// ( 1 2) + 2(1 —X1X2)
% 77,-1(-3)’mc'(X1X2) _ 77I;_i%),/nc.,app.()(1)(2)] )
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MATCHNG THE INCLUSIVE

We have 6 terms in the threshold expansion!

Impose conditions to the missing orders in z such that it
matches the inclusive at all orders!

Computed expansion

—_—~
(3),matched (3),app. X1+ Xo
N X1, X2) = n;: X1, X —
771/ ( 1, 2) 77// ( 1, 2) +2<1 —X1X2)
% /I/,-@)’mc'(Xle) B ni(':j),inc.,app.(XlXﬂ 7 (1)

Leading term z°
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THRESHOLD AT NNLO

Applying the threshold expansion to NNLO gives good
approximations:

T T
12

T
pp = H+ X
LHC@13TeV
MMHT 2014 NNLO

WE=nR =My /2

/GeV

doewact
dy

ETH:iirich
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THRESHOLD AT NNLO

=

09 NNLO scale band soft-virtual |
pp > H+ X 20 s1

LHC@13TeV
MMHT 2014 NNLO
08 e

/dY

st

NNLO

be.

JdY Jdo
—

approx
NNLO

do

| | | | |
-4 -3 -2 -1 0
Y

52
4
|
1

The approximation performs well for central rapidities |Y| < 3
Consistent improvement by including more terms

To access the missing information from high energy
contribution and fill the gap to the exact NNLO we need
other tools.
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approz best
dofNE6/dY /Aoy o/dY
it
— —

IS
©

I
o0
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THRESHOLD AT NNLO)

NNLO

pp =+ H + X
LHC@13TeV
MMHT 2014 NNLO
Wp = KR =mp/2

scale band

-3 -2 -1 0
Y

woow
R S

The approximation performs well for central rapidities |Y| < 3
Consistent improvement by including more terms

To access the missing information from high energy
contribution and fill the gap to the exact NNLO we need

other tools.
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THRESHOLD AT NGLO

—
—_
T

o
Nej
T

N3LO

pp = H+ X
LHC@13TeV
MMHT 2014 NNLO
hp =npp=mp/2

o
oo
T

daPEreT Y Jdokiss o /dY
—_
\
|

-4 -3 -2 -1

Consistent behaviour between NNLO and N3LO regarding

threshold expansion!

~ of

Large rapidities show more variation
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THRESHOLD AT NGLO

iy
—_
T

Aoyl /dY [dofisy o /dY
—_
/

0.9 |- N3LO scale band ——— soft-virtud
L pp — H + X 20 51
LHC@13T
C@13TeV 5 3

MMHT 2014 NNLO z
MR = BR = mp/2
| |

-4 -3 -2 -1 0 1 2 3 4
Y

(=
]
T
|
S
N
|

Consistent behaviour between NNLO and N3LO regarding
threshold expansion!

Large rapidities show more variation
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RAPIDITY

The N3LO correction is well
within the scale variation of
NNLO!

Significant reduction of scale
uncertainty [-3.4%,+0.9%)]

Agreement with another

dora/dY [pb]

N approximation

E ! - — [Cieri,Chen,Gehrmann,Glover,Huss]
Soal

£ 0.8! I I I I | . I L I
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dora/dY [pb]

dowxiofdY [ doysio/dY

RAPIDITY

The N3LO correction is well
within the scale variation of
NNLO!

Significant reduction of scale
uncertainty [-3.4%,+0.9%)]

Agreement with another

approximation

e
©
NES

4
0
LI

[Cieri,Chen,Gehrmann,Glover,Huss]

Flag
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CONCLUSION

We computed the Higgs boson rapidity distribution at N3LO

We observe stabilisation of perturbative correction and a
significant reduction in the variation of the cross section as a
function of the perturbative scale.

N3LO corrections are uniform throughout the entire rapidity
range.

Our result is the cornerstone for future fully differential
prediction of the Higgs boson phenomenology.
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We computed the Higgs boson rapidity distribution at N3LO

We observe stabilisation of perturbative correction and a
significant reduction in the variation of the cross section as a
function of the perturbative scale.

N3LO corrections are uniform throughout the entire rapidity
range.

Our result is the cornerstone for future fully differential
prediction of the Higgs boson phenomenology.
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