The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions

Pheno Seminar, C. N. Yang Institute, Stony Brook University May 2, 2019

Francis-Yan Cyr-Racine

Department of Physics, Harvard University

Department of Physics and Astronomy, University of New Mexico

w/ Christina Kreisch, Lloyd Knox, Lachlan Lancaster, Olivier Doré

Disclaimer

- This talk might solicit a strong response from members of the audience. Viewer discretion is advised.
- Spherical cows will be used in this talk. However, they will not be harmed.

Precision Cosmology Era

Precision Cosmology Era?

How much do we really know the expansion history of our Universe?

Planck collaboration (2018)

Not all probes of H(z) are born equal...

Cosmic Microwave Background

Baryon Acoustic Oscillations (BAO)

- If sound horizon if known (from CMB, say), then can use BAO to infer Hubble rate.
- Conversely, if Hubble rate is known, can use BAO to infer sound horizon.

A little misleading?

BOSS data points on this plot use CMB-measured value of the sound horizon as calibration!

Planck collaboration (2018)

Calibrate BAO with local distance ladder

Can make BAO compatible with local H_0 measurement with a smaller baryon-photon sound horizon.

For comparison, Planck's CMB value is: $r_{\rm s} = 147.05 \pm 0.30 \,{\rm Mpc}$

Aylor et al, (2018)

Discrepancy in the baryon sound horizon

Aylor et al. (2018) See also Bernal et al. (2016)

How to modify the Baryon-Photon Sound Horizon

 $C_{\rm S}(u)$

• Can either change the sound speed, or the Hubble rate at early times.

da

 $a_{\rm d}$

Can we change the Hubble rate before recombination without ruining everything else?

 $=\frac{8\pi G}{2}$ $H^2(a)$

Issue: Sound horizon vs Damping scale

Credits: Lloyd Knox

The problem with $N_{\rm eff}$

- The presence of extra relativistic species is a hallmark of many extensions of the Standard Model (*N*-Naturalness, Twin Higgs, etc.)
- However, it leads to too much damping in the temperature spectrum of the CMB!

The problem with $N_{\rm eff}$

- But, wait, can't the damage to the damping tail can be undone by changing the helium abundance? Sure...
- However, a phase shift of the CMB peaks towards lower *l* remains.

Bashinsky & Seljak (2004) Baumann et al. (2016)

• Need to examine the behavior of fluctuations.

Free-streaming Radiation and the CMB

Baryon-photon perturbations interact with all relativistic species through their gravitational coupling

The problem with $N_{\rm eff}$

Aylor et al. (2018) See also Bernal et al. (2016)

Sound horizon discrepancy and relativistic species

- One way to interpret the current tension among cosmological datasets is that the baryon-photon sound horizon estimates from early time and late time probes is discrepant.
- This could be fixed by changing the Hubble expansion rate in the two decades in scale factor before recombination.
- Adding relativistic species is a natural way to achieve this, but it introduces more problems than it solves (damping tail, phase shift, matter fluctuation amplitude, etc.)

Any way to rescue $N_{\rm eff}$?

• Since most (if not all) of the non-photon radiation at early times is made of neutrinos, let's have a look at the status of neutrino physics.

The current status of neutrino physics

From Michele Maltoni's talk at the Neutrino 2018 conference:

- Anomalies in $v_e \rightarrow v_e$ disappearance and $v_\mu \rightarrow v_e$ appearance experiments point towards conversion mechanisms beyond the well-established 3v oscillation paradigm;
- ⇒ sterile neutrino models **fail to simultaneously account** for **all** the $\nu_e \rightarrow \nu_e$ data, the $\nu_\mu \rightarrow \nu_e$ data and the $\nu_\mu \rightarrow \nu_\mu$ data. This conclusion is robust;
 - if the $\nu_e \rightarrow \nu_e$ and $\nu_\mu \rightarrow \nu_e$ anomalies are confirmed, and the $\nu_\mu \rightarrow \nu_\mu$ bounds are not refuted, new physics will be needed. Such new physics <u>may well involve extra sterile</u> <u>neutrinos</u>, but <u>together with something else</u> (or some "unusual" neutrino property).

XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018), Heidelberg, Germany, 4-9 June 2018 (Session Sterile Neutrinos and Interpretations, Part 2)

New Physics in the Neutrino sector

• Introduce new neutrino self-interaction that suppresses neutrino free-streaming at early times.

Kreisch, Cyr-Racine & Doré, 1902.00534

Beyond Free-streaming Neutrinos

- A significant recent interest in non free-streaming (fluid-like) radiation:
 - Affect background cosmology similarly to standard $N_{\rm eff}$.
 - However, cosmological perturbation evolution is very different.
 - Hannestad (2005)
 - Trotta & Melchiorri (2005)
 - Melchiorri & Serra (2006)
 - Bell, Pierpaoli & Sigurdson (2006)
 - De Bernardis et al. (2008)
 - Basboll, Bjaelde, Hannestad & Raffelt (2009)
 - Smith, Das & Zahn (2012)
 - Cyr-Racine & Sigurdson (2014)

- Archidiacono & Hannestad (2014)
- Forastieri, Lattanzi & Natoli (2015)
- Baumann, Green, Meyers & Wallisch (2016)
- Brust, Cui & Sigurdson (2017)
- Lancaster, Cyr-Racine, Knox, Pan (2017)
- Choi, Chiang & Loverde (2018)
- Song, Gonzalez-Garcia & Salvado (2018)
- And many more...

Beyond Free-streaming Neutrinos

Beyond Free-streaming Neutrinos

• Summary of current bounds

Ng & Beacom (2014). See also Arcadi et al. (2018)

Delayed Neutrino Decoupling

Cyr-Racine & Sigurdson (2014) Oldengott, Rampf & Wong (2015)

Massive Neutrino Boltzmann Hierarchy

Simplified Boltzmann Hierarchy (assume decoupling in relativistic regime):

$$\frac{\partial \nu_{l}}{\partial \tau} + k \frac{q}{\epsilon} \left(\frac{l+1}{2l+1} \nu_{l+1} - \frac{l}{2l+1} \nu_{l-1} \right) - 4 \left[\frac{\partial \phi}{\partial \tau} \delta_{l0} + \frac{k}{3} \frac{\epsilon}{q} \psi \delta_{l1} \right] = - a \frac{G_{\text{eff}}^{2} T_{\nu}^{5} \nu_{l}}{f_{\nu}^{(0)}(q)} \left(\frac{T_{\nu,0}}{q} \right) \left(A \left(\frac{q}{T_{\nu,0}} \right) + B_{l} \left(\frac{q}{T_{\nu,0}} \right) - 2D_{l} \left(\frac{q}{T_{\nu,0}} \right) \right)$$

exation-time approximation
$$\epsilon = \sqrt{q^{2} + a^{2} m_{\nu}^{2}}$$

Cyr-Racine & Sigurdson (2014) Oldengott, Rampf & Wong (2015) Kreisch, Cyr-Racine+ (2019)

Rel

Impact of self-interacting Neutrinos on CMB

Cyr-Racine & Sigurdson (2014)

Impact of self-interacting Neutrinos on CMB

Kreisch, Cyr-Racine + (2019)

Impact of self-interacting Neutrinos on matter clustering

Kreisch, Cyr-Racine + (2019)

Francis-Yan Cyr-Racine - Harvard

Impact of self-interacting Neutrinos on matter clustering: N_{eff}

Kreisch, Cyr-Racine + (2019)

Francis-Yan Cyr-Racine - Harvard

Now that we understand the physics, what does the data say?

Let's ask Christina

Christina Kreisch

A Tale of two statistical modes

Francis-Yan Cyr-Racine - Harvard

5/1/19

What is this SIv mode?

Let's compare the two modes side-by-side

Concordant direct and inverse distance ladders

Aylor et al, (2018)

Let's compare the two modes side-by-side

Francis-Yan Cyr-Racine - Harvard

$SI\nu$ Cosmology and matter clustering

• The combined effect of N_{eff} , neutrino masses, selfinteraction, A_s , and n_s leave large-scale structure largely unchanged on scales where it best measured.

Kreisch, Cyr-Racine + (2019)

$SI\nu$ Cosmology and cosmological tensions

• Even without using these data in our analysis, the SI ν model can naturally accommodate a lower σ_8 value and larger H_0

Sure, the sound horizon is good, but the fit must be terrible, right?

• The model does improve the fit compares to Λ CDM, even after accounting for the extra parameters.

Parameter	Strongly Interacting Neutrino Mode
$\Delta\chi^2_{\mathrm{low}\ell}$	0.66
$\Delta \chi^2_{{ m high}\ell}$	-1.15
$\Delta\chi^2_{ m lens}$	0.06
$\Delta\chi^2_{H_0}$	-6.68
$\Delta\chi^2_{ m BAO}$	-0.81
$\Delta \chi^2_{ m Total}$	-7.91
ΔAIC	$-1.91 \longrightarrow$ Correcting for extra parame

$$\Delta AIC = AIC_{I\nu} - AIC_{\Lambda CDM} = \Delta \chi^2 + 2\Delta k,$$

Kreisch, Cyr-Racine + (2019)

How important are the neutrino selfinteraction?

• Answer: very much so!

Kreisch, Cyr-Racine + (2019)

Francis-Yan Cyr-Racine - Harvard

Why does the SI ν work?

 ΛCDM

- $N_{\rm eff}$ increases Hubble at early times, hence reducing the sound horizon.
- The tightly-coupled neutrinos do not over damp or phase shift the photon-baryon fluctuations.
- Changes in the primordial spectrum of fluctuations (n_s, A_s) absorbs the remainder of the changes.
- What about matter clustering?

$SI\nu$ Cosmology and neutrino physics

• The model allows for a whole new neutrinos species and favors a non-vanishing neutrino mass at $2-\sigma$

Kreisch, Cyr-Racine + (2019)

SI ν Cosmology: The dark side

• The required strength of the neutrino selfinteraction might be very difficult to model build.

$$G_{\rm eff} \sim 10^{10} G_{\rm F}$$

- It is still unclear whether CMB polarization data can fully accommodate the SIv cosmology.
- The shape of the matter power spectrum might become problematic.

Important Take Home Messages

- As precision increases, cracks might be appearing in the standard cosmological model.
- Inspired by status of neutrino physics, we have explored a self-interacting neutrino scenario that might help reconcile datasets.

• Main message: It is possible to find radically different cosmological model that nonetheless can provide excellent fit to the data.

Backup: Compare to standard extension

• The model does improve the fit compares to $\Lambda \text{CDM} + N_{\text{eff}} + m_{\nu}$, even after accounting for the extra parameter.

Parameter	Strongly Interacting Neutrino Mode
$\Delta\chi^2_{\mathrm{low}\ell}$	2.40
$\Delta\chi^2_{{ m high}\ell}$	-3.40
$\Delta\chi^2_{ m lens}$	-0.20
$\Delta \chi^2_{H_0}$	-1.32
$\Delta\chi^2_{ m BAO}$	-0.81
$\Delta \chi^2_{ m Total}$	-3.33
ΔAIC	-1.33

Kreisch, Cyr-Racine + (2019)

Backup: Mediating Controversy

Kreisch, Cyr-Racine + (2019)

Backup: Impact of self-interacting Neutrinos on matter clustering

• Dark matter perturbation equation can be written as:

$$\ddot{d}_{\rm c} + \frac{\dot{a}}{a}\dot{d}_{\rm c} = -k^2\psi, \qquad \qquad d_{\rm c} \equiv \delta_{\rm c} - 3\phi,$$

where
$$ds^2 = a^2(\tau)[-(1+2\psi)d\tau^2 + (1-2\phi)d\vec{x}^2],$$

• The general solution (in radiation domination):

$$d_{\rm c}(k,\tau) = -\frac{9}{2}\phi_{\rm p} + k^2 \int_0^{\tau} d\tau' \tau' \psi(k,\tau') \ln{(\tau'/\tau)},$$

• Without free-streaming neutrinos, we have:

$$\phi - \psi = 0$$
 instead of $\phi = (1 + 2R_{
u}/5)\psi$

Backup: Impact of self-interacting Neutrinos on matter clustering

Kreisch, Cyr-Racine + (2019)

Francis-Yan Cyr-Racine - Harvard

5/1/19