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Disclaimer

• This talk might solicit a strong response from 
members of the audience. Viewer discretion is 
advised.

• Spherical cows will be used in this talk. However, 
they will not be harmed. 
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Image credit: Rhys Taylor, Cardiff University

Precision Cosmology Era
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Precision Cosmology Era?

How much do we really 
know the expansion 
history of our Universe?

Planck collaboration (2018)

CMB

BAO

Distance ladder
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Not all probes of H(z) are born equal…

On this plot, only Riess
et al. (2018) provides a 
direct measurement of 
the current Hubble rate.

Planck collaboration (2018)

CMB

BAO

Distance ladder

rs =

Z td

0
csdt/a =

Z ad

0
cs

da

a2H(a)

Other measurements 
requires the knowledge 
of the baryon-photon 

sound horizon, rs.  

Time of baryon decoupling 
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Cosmic Microwave Background

✓s = rs/DA(zd)

DA(z) =

Z z

0
dz0/H(z0)

DA(zd)

The CMB primarily 
measures angles on the 

sky.

Assuming a late-time 
cosmology, can infer rs

from 𝜃s.



5/1/19Francis-Yan Cyr-Racine - Harvard 7

Baryon Acoustic Oscillations (BAO)

BAO primarily measures 2 
“processed” versions of the 
baryon-photon sound 
horizon.

Line of sight:

Transverse:

H(z)rs

rs/DA(z)

• If sound horizon if known (from CMB, say), then can use BAO to 
infer Hubble rate.

• Conversely, if Hubble rate is known, can use BAO to infer sound 
horizon.

Eric Huff (JPL)
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A little misleading?

BOSS data points on this 
plot use CMB-measured 

value of the sound 
horizon as calibration!

Planck collaboration (2018)

CMB

BAO

Distance ladder
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Calibrate BAO with local distance 
ladder

Can make BAO 
compatible with local H0

measurement with a 
smaller baryon-photon 

sound horizon.

Aylor et al, (2018)

Distance ladder

rs = 147.05± 0.30Mpc

For comparison, 
Planck’s CMB value is:

6

Figure 2. Expansion rate measurements together with best-fit mod-
els. BAO data have been converted to H(z) by assumption of
rs = 138.09 Mpc.

crepancies is cosmological, the cosmological solution must
make its important changes at times prior to recombination.

3.1. CDL based constraints

We begin our discussion with our first result from a com-
bination of the H0 constraint (that we refer to as “Cepheids”,
R18), used for calibrating the Pantheon binned distance mod-
uli (“SNe”, Scolnic et al. 2018), which in turn are used to
calibrate the BAO distance and H(z) constraints from BOSS
galaxies (“BAO”, Alam et al. 2017). The CDL based rs re-
sults are shown as blue circles in the top panel of Fig. 3.

3.1.1. CDL + ⇤CDM

First, we have assumed the ⇤CDM model – using it to pro-
vide the parameterized shape of H(z)/H0. We find

rs = (137.6 ± 3.45) Mpc. (9)

As a point of comparison we mention a result from Ad-
dison et al. (2018). They take a more comprehensive set of
BAO data, including constraints at lower redshift from galaxy
surveys (Beutler et al. 2011; Ross et al. 2015), and higher
redshift constraints from BOSS Lyman-↵ (Font-Ribera et al.
2014; Delubac et al. 2015; Bautista et al. 2017) and find, from
the BAO data themselves, assuming the ⇤CDM model, that
H0rs = (10119±138) km/sec. Combining this with the R18
result for H0 it becomes

rs = (137.7 ± 3.7) Mpc (10)

This result is nearly the same, in mean and standard devia-
tion, as our own CDL + ⇤CDM result. The lack of reduction
in uncertainty, despite the much greater amount of BAO data,

is due in part to the lack of use of the SNeIa data, which in-
creases uncertainty in ⌦m, and therefore the shape of DA(z).
The other important factor in the lack of reduction is that the
BOSS galaxy data are unmatched in precision.

Our second CDL + ⇤CDM result comes from replacing
Cepheids (R18) with the SLTD data from H0LiCOW (Birrer
et al. 2018) like explained in §2.2. From our SNeIa + BAO
data we have ↵BAO ⌘ c/(rsH0) = 29.7 ± 0.37. Combining
this with H0 = 72.5+2.1

�2.3 km/s/Mpc from Birrer et al. (2018)
we find

rs = 139.3+4.8
�4.4 Mpc. (11)

3.1.2. CDL + Spline

To explore the model-dependence of the CDL method for
rs inference, we now drop the assumption of ⇤CDM for pa-
rameterization of the shape of H(z)/H0 and replace it with
our Spline model. Because our BAO results span such a small
range of redshift, we can expect that there is very little sen-
sitivity of the inferred rs to the choice of parameterization,
as long as it is not varying rapidly on redshift intervals com-
parable to the redshift span of the BAO measurements. With
the four-parameter model described in the previous section
we indeed find a very similar result to the ⇤CDM result:

rs = (138.1 ± 3.59) Mpc. (12)

That this sound horizon result is a little bit larger is con-
sistent with what we see in the residuals panel of Fig. 1.
Namely, the SNe data largely sit above the ⇤CDM best-fit
curve in the redshift interval with the BAO data. The in-
creased freedom of the empirical model reduces the influ-
ence of the SNe outside of this redshift range, boosting D(z)

in this interval with the result that rs is slightly larger. Note
though that statistically, this is a very small shift of less than
0.2�.

More importantly, because the ⇤CDM and Spline results
for rs are basically the same, including in the uncertainty,
we can conclude that the CDL sound-horizon determina-
tion is highly model independent. In particular, it is, at
most, very weakly dependent on any assumptions about
the shape of the distance-redshift relationship. As a fur-
ther check, we performed an analysis with Spline points
moved to z ={0, 0.2, 0.5, 0.8, 1.1} away from our base-
line z = {0, 0.2, 0.57, 0.8, 1.3} (see §2.1) and obtain rs =

137.7 ± 3.60 Mpc indicating that our results are not highly
insensitive to the choice of pivotal redshift points.

Before closing this subsection we comment on the depen-
dence of the CDL result for rs on curvature. Using R16 for
the H0 constraint, Betoule et al. (2014) for the SNeIa data,
and the same BOSS BAO data, Verde et al. (2017) found,
also for a phenomenological parameterization of H(z), that
rs = 138.5 ± 4.3 Mpc assuming ⌦k = 0. This is consistent
with our result to within 0.2�. When they marginalize over
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Discrepancy in the baryon sound 
horizon

Aylor et al. (2018)
See also Bernal et al. (2016)
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How to modify the Baryon-Photon 
Sound Horizon

• Can either change the sound speed, 
or the Hubble rate at early times.

rs =

Z ad

0
da

cs(a)

a2H(a)

cs =
1q

3(1 + 3⇢b

4⇢�
)

H2(a) =
8⇡G

3

X

i

⇢i(a)

Can we change the 
Hubble rate before 

recombination without 
ruining everything else?
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Credits: Lloyd Knox

Issue: Sound horizon vs Damping scale

6

FIG. 1: E↵ects of
P

m⌫ , Ge↵ , and Ne↵ on the phase and amplitude of the TT and EE power spectra. Colors denote
di↵erent values of Ge↵ . Solid spectra correspond to

P
m⌫ = 0.06 eV and dashed spectra correspond toP

m⌫ = 0.23 eV. Measurements from the Planck 2015 data release are included [109].

Ne↵ , defined via the relation

⇢R =

"
1 + Ne↵

7

8

✓
4

11

◆4/3
#

⇢� , (13)

where ⇢R and ⇢� are the total energy density in radiation
and in photons, respectively. The e↵ects on the CMB of
increasing Ne↵ have been well-studied in the literature
(see e.g. Ref. [117]) for the case of free-streaming neutri-
nos. For fixed values of the angular scale of the sound
horizon, the epoch of matter-radiation equality, and the
physical baryon abundance, it was found that the most
important net impact of increasing Ne↵ was to damp the
high-` tail of the TT spectrum and to induce a phase
shift towards larger scales (low-`). Interestingly, self-
interacting neutrinos can partially compensate for these

e↵ects, hence pointing to a possible degeneracy between
Ge↵ and Ne↵ . An example of this can be seen in the
dotted red line in the lower left panel of Fig. 1, where
the excess of damping caused by Ne↵ = 4.046 (dotted
black line) is compensated by suppressing neutrino free-
streaming with Ge↵ = 10�2 MeV�2.

Ge↵ a↵ects the EE polarization power spectrum in a
similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ⇤CDM model and that with self-interacting
neutrinos is more visible in this case due to the sharp, well
defined peaks of the polarization spectrum [113]. This
allows to directly see in which direction the spectrum is
shifted compared to ⇤CDM since the oscillations in the
residuals lean in the direction of the phase shift, that is,
there is a sharper drop o↵ in the residuals in the direction

arecaeq
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The problem with Neff

• The presence of extra relativistic species is a hallmark of 
many extensions of the Standard Model (N-Naturalness, 
Twin Higgs, etc.)

• However, it leads to too much damping in the 
temperature spectrum of the CMB!
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The problem with Neff

• But, wait, can’t the damage to 
the damping tail can be undone 
by changing the helium 
abundance? Sure…

• However, a phase shift of the 
CMB peaks towards lower l
remains. 

• Need to examine the behavior 
of fluctuations.

3

di↵usion distance at recombination is

r2d = ⇡2

Z a⇤

0

da

a3�TneH


R2 + 16

15 (1 +R)

6(1 +R2)

�
(1)

where ne is the number density of free electrons, �T is the
Thompson cross-section, a⇤ is the scale factor at recombi-
nation (defined below) and the factor in square brackets
is due to the directional and polarization dependence of
Thompson scattering [28, 29]. Although Eq. 1 is only an
approximation to the di↵usion length, it allows an an-
alytic understanding of the dependence of this di↵usion
length on model parameters [21].
If we approximate a⇤ as independent of H, then rd /

H�0.5. This is as expected for a random walk process:
the distance increases as the square root of time. In-
creasing H (which happens when we increase Ne↵) leads
to smaller rd which would decrease the amount of damp-
ing. Why do we see, in Fig. 1, the damping increase as
Ne↵ increases?
The answer has to do with how rs and DA change to

keep ✓s fixed despite the increased expansion rate. The
comoving sound horizon is given by

rs =

Z t⇤

0
cs dt/a =

Z a⇤

0

cs da

a2H
. (2)

Since rs / 1/H, it responds even more rapidly to changes
in H than is the case for rd. To keep ✓s fixed at the
observed value, DA must also scale as 1/H. Since DA

decreases by more than would be necessary to keep ✓d
fixed, ✓d increases which means the damping is increased.
To look at it another way, if we knew DA perfectly,

we could use rs to determine H prior to recombination.
But we do not know DA, largely because we do not know
the value of the cosmological constant, or more generally
the density of the dark energy as a function of the scale
factor. Instead, we can use the two scales together to
form a ratio that is sensitive to H, with no dependence
on DA: ✓d/✓s = rd/rs / H0.5.
Does this explanation hold together quantitatively? To

demonstrate that what we are seeing in the power spec-
trum actually is increased Silk damping (at fixed ✓s) we
experiment with also fixing ✓d as Ne↵ increases. The
bottom panel of Fig. 1 shows how the angular power
spectrum responds to the same variations in Ne↵ , only
now taken at constant ✓d as well. When we remove the
✓d variation, the impact of the Ne↵ variation almost en-
tirely disappears. We conclude that the variations we
are seeing in the top panel are indeed due to the impact
of Ne↵ on the amount of Silk damping. A very similar
demonstration was provided by [22].
To keep ✓d fixed as Ne↵ varies, we varied a parameter

whose sole impact is on the number density of electrons:
the primordial fraction of baryonic mass in Helium, YP.
Even as early as times when 99% of the photons have yet
to last scatter, Helium, with its greater binding energy
than Hydrogen, is almost entirely neutral. Thus ne =
Xe(np + nH) = Xenb(1 � YP) where the first equality

FIG. 1: Top panel: WMAP and SPT power spectrum mea-
surements, and theoretical power spectra normalized at ` =
200. The black (central) curve is for the best-fit ⇤CDM+Ne↵

model assuming BBN consistency. The other model curves
are for Ne↵ varying from 2 to 6 with ⇢b, ✓s, and zEQ held
fixed. Larger Ne↵ corresponds to lower power. Central panel:
Same as above except normalized at ` = 400 where the ISW
contribution is negligible. We see most of the variation re-
mains. Bottom panel: The same as the central panel except
we vary YP to keep ✓d fixed. The lack of scatter in these spec-
tra compared to those in the middle panel demonstrates that
the e↵ect of Ne↵ on small-scale data is largely captured by its
impact on the damping scale. We can also begin to see more
subtle e↵ects of the neutrinos, most noticeably a phase shift
in the acoustic oscillations [22].

defines Xe and we have kept nb (and thus ⇢b) fixed. The
limit of integration in the above equations for rs and rd
is only slightly a↵ected by changing YP and thus rs is
largely una↵ected. However, the damping length scales
with YP as rd / (1� YP)�0.5.
From our analysis one finds that rd/rs / (1 +

f⌫)0.25/
p
1� YP where f⌫ ⌘ ⇢⌫/⇢� is proportional to

Ne↵ . The first factor arises because increasing H at fixed
zEQ meansH2 / (1+f⌫). Thus asNe↵ is varied, we know
how to change YP to keep rd/rs (and hence ✓d/✓s) fixed.

Hou et al. (2012)

Bashinsky & Seljak (2004)
Baumann et al. (2016)



Free-streaming Radiation and the CMB

Bashinsky & Seljak (2004)

Baryon-photon perturbations interact with all relativistic species 
through their gravitational coupling 
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Cyr-Racine & Sigurdson (2014)

Baryon-photon acoustic wave

A Cosmological Limit on Neutrino Self-Interactions

Francis-Yan Cyr-Racine
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA and

California Institute of Technology, Pasadena, CA 91125, USA

Kris Sigurdson
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada

(Dated: April 23, 2013)

In the standard model neutrinos are assumed to have streamed across the Universe since they
last scattered at the weak decoupling epoch when the temperature of the standard-model plasma
was ⇠MeV. However, the presence of nonstandard physics in the neutrino sector could alter this
simple picture and delay neutrino free-streaming until a much later epoch. We use observations of
the Cosmic Microwave Background (CMB) to constrain the strength of neutrino self-interactions G⌫

and put limits on new physics in the neutrino sector from the early universe. The recent improvement
in accuracy of CMB measurements made by the Planck satellite and high-l experiments is critical
in obtaining this constraint. We show that cosmological data allows neutrino free-streaming to
be delayed until the Universe has cooled to a temperature close to 35 eV, almost five orders of
magnitude lower than in the standard cosmological paradigm. Nevertheless, these data constrain
neutrino physics at an e↵ective energy scale ⇤⌫ & 30 MeV well above the typical energy scale
of neutrinos when the decouple. While we discuss a specific scenario in which such a late onset of
neutrino free-streaming could occur our constraint on the neutrino visibility function is very general.

PACS numbers: 98.80.-k

INTRODUCTION Neutrinos are the most elusive
components of the standard model (SM) of particle
physics. Their tremendously weak interactions with
other SM fields render measurements of their fundamen-
tal properties very challenging. At the same time, the
existence of neutrino mass [? ] constitutes one of the
most compelling evidence for physics beyond the SM, and
makes the neutrino sector a prime candidate for searches
of such new physics. In recent years, cosmology has pro-
vided some of the most stringent constraints on neutrino
properties, most notably the sum of their masses and
their e↵ective number [? ? ? ]. Can cosmological data
can inform us about other aspects of neutrino physics?

GF
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p
2

8

g

2

m

2
W

= 1.16637(1) ⇥ 10�11 MeV�2 (1)

�W / n⌫G
2
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2
⌫ / G

2
FT

5
⌫ (2)

T⌫,dec = 1.48MeV (3)

R⌫ =
⇢⌫

⇢� + ⇢⌫
' 0.403 (4)

One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the

very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-
cal data inform us about possible interactions in the neu-
trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?
? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and

for
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INTRODUCTION Neutrinos are the most elusive
components of the standard model (SM) of particle
physics. Their tremendously weak interactions with
other SM fields render measurements of their fundamen-
tal properties very challenging. At the same time, the
existence of neutrino mass [? ] constitutes one of the
most compelling evidence for physics beyond the SM, and
makes the neutrino sector a prime candidate for searches
of such new physics. In recent years, cosmology has pro-
vided some of the most stringent constraints on neutrino
properties, most notably the sum of their masses and
their e↵ective number [? ? ? ]. Can cosmological data
can inform us about other aspects of neutrino physics?
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Ne↵ ' 3.046 (5)

One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model

this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-
cal data inform us about possible interactions in the neu-
trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?
? ? ? ? ], neutrinos were modeled as a fluid-like [?
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FIG. 3: a) Adiabatic Green’s functions for neutrino (solid) and photon (dashed) number density perturbations in the radiation
era. The neutrino fraction, Rν , of the radiation density is assumed infinitesimal. b) Adiabatic Green’s functions for the
gravitational potentials Φ± ≡ (Ψ ± Φ)/2 in the radiation era. The solid and dashed curves are the sums of the O(R0

ν) and
O(Rν) terms for three neutrino species. The dotted line is Φ+ = Φ for Rν → 0.

appearing on its right hand side is the one provided
by the photon density perturbation (112). As for the
left hand side, where Ψ = Φ+ + Φ−, the only delta-
function comes from the double derivative of the term
(

χ2 − 1
3

)

pΦ θ
(

1√
3
− |χ|

)

in eq. (106). The equality of

these contributions requires

pΦ = −
√

3(1 − Rν)pγ . (114)

Substituting eq. (106) in (113) and eliminating pΦ with
the relation above, we obtain

pγ =
1

1 − 2Rν

[

3

2
ζin −

∫ 1

−1
dχF−(χ)

]

. (115)

Calculating pΦ from the last two equations is somewhat
easier than from eq. (107).

Now we have all the analytic tools to analyze how neu-
trinos affect CMB perturbations. The evolution of metric
perturbations without neutrinos is given by eqs. (108–
109). Then the photon density Green’s function follows
from eqs. (112, 115) as

d̄(Rν→0)
γ = −3ζin

[√
3 θ
(

1√
3
− |χ|

)

−

− 1
2 δD

(

|χ|− 1√
3

)]

.

(116)

Its Fourier transform (93) leads to the photon density
Fourier modes in the radiation era:

d(Rν→0)
γ (τ, k) = −3ζin

(

2 sinϕs

ϕs
− cosϕs

)

, (117)

with ϕs = kτ/
√

3. In particular, without neutrinos the
photon density modes oscillate under the acoustic hori-
zon (ϕs ≫ 1) as a pure ϕs cosine.

The predictions for both the phase and the amplitude
of the photon mode oscillations differ when the gravity

of neutrino perturbations is taken into account. The os-
cillations of the Fourier modes on subhorizon scales are
described by the singular terms in the real space Green’s
functions. For the photon density (112) these are the
δ-function and (χ± 1√

3
)−1 singularities at χ = ± 1√

3
:

d̄γ(χ) = pγ δD

(

|χ|−
1√
3

)

+
2rγ

χ2 − 1
3

+ . . . , (118)

where

rγ = Φ̄+(1/
√

3) (119)

and the dots stand for more regular terms. The Fourier
transform of eq. (118) follows from the first and third
lines of Table II, where n is set to 0 and 1, as

dγ(τ, k) = 2
(

pγ cosϕs − rγπ
√

3 sinϕs

)

+ O(ϕ−1
s ) . (120)

A non-zero phase shift with respect to the cosϕs oscil-
lations is generated whenever rγ ̸= 0. By eq. (119) this
can happen for adiabatic perturbations if only some per-
turbations propagate faster than the sound speed in the
photon fluid, and thus are able to generate metric pertur-
bations beyond the acoustic horizon. This is the case for
the neutrino perturbations, propagating with the speed
of light, Fig. 3 a).

The values of pγ and rγ in eq. (118) are calculated
in O(Rν ) order in Appendix C. With its results (C6)
and (C7), the mode (120) can be presented as

dγ(τ, k) = 3ζin(1 + ∆γ) cos (ϕs + δϕ) + O(ϕ−1
s ) , (121)

where

∆γ ≃ − 0.2683Rν + O(R2
ν) ,

δϕ ≃ 0.1912 πRν + O(R2
ν) .

(122)

As demonstrated in Fig. 4 a), our theoretical predictions
are in excellent agreement with numerical calculations

4
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FIG. 2. Snapshot of neutrino and photon density fluctuations in configuration space at a fixed redshift. The black dot-dashed
line shows the standard free-streaming neutrino fluctuation while the green dashed line displays the corresponding photon
density fluctuation. The solid blue and red dotted lines show the density fluctuation of self-interacting neutrinos and the
corresponding photon perturbation, respectively. These two lines lie on top of one another since both neutrinos and photons
behave as tightly-coupled fluids at the epoch shown here. The di↵erence between the green dashed and the red dotted lines
readily illustrates the phase shift and amplitude suppression of the photon fluctuation associated with free-streaming neutrinos.
Here we have adopted a Planck cosmology [3].

neutrinos solely couple to CMB photons via the gravita-
tional potentials, which themselves depend on integrals
of the neutrino distribution function. While it would be
interesting to study and quantify the impact of neutrino
spectral distortions on the CMB (see e.g. [57]), we leave
this possibility to future work and assume the form of
Eqs. (4) and (5) to be valid throughout neutrino decou-
pling.

We solve Eqs. 4 and 5 numerically together with the
standard perturbation equations for the photons, baryons
and dark matter using a modified version of the code
CAMB [58]. At early times, the tightly-coupled neutrino
equations are very sti↵ and we use a tight-coupling ap-
proximation which sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and
F⌫l = 0 for l � 3 [59]. We note that the neutrino opacity
is related to the commonly used viscosity parameter c2vis
though the relation c2vis = (1/3)(1�(15/8)⌧̇⌫↵2F⌫2/(✓⌫+
k�)). As long as neutrinos form a tightly-coupled fluid,
the second term is very close to unity and c2vis approaches
zero. After, the onset of neutrino free-streaming, the sec-

ond term becomes vanishingly small and c2vis ! 1/3. This
illustrates that modeling nonstandard neutrino physics
with a constant c2vis 6= 1/3 has no intuitive meaning in
terms of simple particle scattering, hence shedding doubt
on the usefulness of this parametrization.

We compare in Fig. 2 the evolution in configuration
space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctua-
tions [13, 19, 20]. For each Fourier mode of the photon
fluctuations, the magnitude of these two e↵ects is directly
proportional to the free-streaming fraction of the total
radiation energy density when the Fourier mode enters
the Hubble horizon. If neutrino free-streaming is delayed
due to their self-interaction until redshift z⌫⇤, Fourier
modes of photon fluctuations entering the horizon before
z⌫⇤ would not be a↵ected by the standard shift in am-
plitude and phase. On the other hand, the amplitude of

Free-
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photon 
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Aylor et al. (2018)
See also Bernal et al. (2016)

The problem with Neff
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Sound horizon discrepancy and 
relativistic species

• One way to interpret the current tension among 
cosmological datasets is that the baryon-photon sound 
horizon estimates from early time and late time probes is 
discrepant.

• This could be fixed by changing the Hubble expansion 
rate in the two decades in scale factor before 
recombination.

• Adding relativistic species is a natural way to achieve this, 
but it introduces more problems than it solves (damping 
tail, phase shift, matter fluctuation amplitude, etc.)
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Any way to rescue Neff ? 

• Since most (if not all) of the non-photon radiation at early 
times is made of neutrinos, let’s have a look at the status 
of neutrino physics. 
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The current status of neutrino physics

Summary 25

• Anomalies in ⌫e ! ⌫e disappearance and ⌫µ ! ⌫e appearance experiments point to-
wards conversion mechanisms beyond the well-established 3⌫ oscillation paradigm;

• each of these anomalies can be individually explained by sterile neutrinos;

• sterile neutrinos still succeed in simultaneously explaining groups of anomalies sharing
the same oscillation channel. However some problem arises:

� ⌫e ! ⌫e disappearance data face issues with flux normalization and the 5 MeV bump,
as well as small tensions in reactor vs gallium and “rates” vs DANSS/NEOS;

� ⌫µ ! ⌫e appearance data show an excess in low-E neutrino data, which is not so
manifest in antineutrino data.

• in contrast, no anomaly is found in any ⌫µ ! ⌫µ disappearance data set;

) sterile neutrino models fail to simultaneously account for all the ⌫e ! ⌫e data, the
⌫µ ! ⌫e data and the ⌫µ ! ⌫µ data. This conclusion is robust;

• if the ⌫e ! ⌫e and ⌫µ ! ⌫e anomalies are confirmed, and the ⌫µ ! ⌫µ bounds are not
refuted, new physics will be needed. Such new physics may well involve extra sterile
neutrinos, but together with something else (or some “unusual” neutrino property).

Michele Maltoni <michele.maltoni@csic.es> Neutrino 2018, 8/06/2018
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as well as small tensions in reactor vs gallium and “rates” vs DANSS/NEOS;

� ⌫µ ! ⌫e appearance data show an excess in low-E neutrino data, which is not so
manifest in antineutrino data.

• in contrast, no anomaly is found in any ⌫µ ! ⌫µ disappearance data set;

) sterile neutrino models fail to simultaneously account for all the ⌫e ! ⌫e data, the
⌫µ ! ⌫e data and the ⌫µ ! ⌫µ data. This conclusion is robust;

• if the ⌫e ! ⌫e and ⌫µ ! ⌫e anomalies are confirmed, and the ⌫µ ! ⌫µ bounds are not
refuted, new physics will be needed. Such new physics may well involve extra sterile
neutrinos, but together with something else (or some “unusual” neutrino property).

Michele Maltoni <michele.maltoni@csic.es> Neutrino 2018, 8/06/2018

From Michele Maltoni’s talk at the Neutrino 2018 
conference:

XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018), Heidelberg, Germany, 
4-9 June 2018 (Session Sterile Neutrinos and Interpretations , Part 2)
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New Physics in the Neutrino sector

• Introduce new neutrino self-interaction that 
suppresses neutrino free-streaming at early times.

2

act only via gravity. In this paper we investigate a class
of models which feature extra, non-standard, neutrino in-
teractions. In these models, neutrinos interact strongly
with a new scalar boson, which is brought into thermal
equilibrium though its coupling to the neutrinos. Rather
than free-streaming, the neutrinos form a tightly coupled
fluid with the new scalar.

These models generically have non-standard values for
N eff

ν , but perhaps more interestingly, the absence of neu-
trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled
fluid, they are fully characterized by density and ve-
locity perturbations, and anisotropic stress is negligible.
In [21, 22] it was shown that the current Wilkinson Mi-
crowave Anisotropy Probe (WMAP) CMB measurements
already have some sensitivity to this effect. This is sig-
nificant because in addition to being able to infer the
presence of relativistic degrees of freedom, we may now
also be able to say something about the interactions of
the particles which make up that relativistic energy den-
sity.

In this paper we address the question: how much rel-
ativistic energy density is there, and what fraction of it
must consist of weakly interacting particles? We answer
this question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other
with bosons, through tree level scalar or pseudo-scalar
couplings of the form

Lνφ = hijνiνjφ + gijνiγ5νjφ, (1)

where the boson φ is taken to be light or massless1. Such
couplings arise in Majoron-like models, viable examples
of which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a
low scale, which occurs late in the history of the universe
[19, 25]. In order to be as model independent as possi-
ble, we assume the new couplings are fixed independently
of the neutrino mass. We also make no distinction be-
tween g or h type couplings, nor between neutrinos and
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson

1 Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].

ν φ

ν φ

ν ν

ν ν

ν

φ

ν

φ

ν

ν

ν

ν

ν
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φ

FIG. 1: The interactions that keep the neutrinos and the
scalar coupled. If the scalar is heavier than mν , the process
ν ↔ νφ is replaced by φ ↔ νν.

decay [27] limits are |g| ! 10−2. Neutrinoless double
beta decay sets a limit gee < 10−4 [28], but does not
constrain other elements of the coupling matrix gαβ.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g ∼ 10−5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless φ boson, scalar couplings could medi-
ate long-range forces with possible cosmological conse-
quences [30, 31], while pseudo-scalar couplings mediate
spin-dependent long-range forces, which have no net ef-
fect on an unpolarized medium2. However, if the φ boson
has even a tiny mass H0 ≪ mφ ≪ 1 eV the interaction is
short ranged and insignificant over cosmological distance
scales.

The φ boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ν − φ sys-
tem may stay in thermal contact until late times. The
processes involved, shown in Figure 1, are νφ ↔ νφ,
νν ↔ φφ, νν ↔ νν, and either ν ↔ νφ or νν ↔ φ,
depending on whether the scalar mass, mφ, is smaller or
larger than the neutrino mass, mν

3. For sufficiently large
couplings, the ν–φ system will remain in thermal contact
until the temperature drops below mν or mφ. At this
point the heavier of the two particles will annihilate or
decay.

The possibility of altering the relativistic energy den-
sity through neutrino decay has been considered in [33]4,

2 For pseudo-scalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3 We set all three neutrino species to a common mass mν , with

mν ≫

√

δm2
sol

,
√

δm2
atm . When this approximation does not

hold, the effects of neutrino mass are negligible in present cos-
mological data.

4 See also, Ref. [34], which studies the case of a scalar boson de-
caying into neutrinos, thus distorting the usual thermal neutrino
distribution. Related scenarios, in which hot dark matter is pro-
duced by the decay of heavier particles, are examined in Ref. [35].

Kreisch, Cyr-Racine & Doré, 1902.00534
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Beyond Free-streaming Neutrinos

• A significant recent interest in non free-streaming 
(fluid-like) radiation: 

• Affect background cosmology similarly to 
standard Neff .

• However, cosmological perturbation evolution 
is very different. 

- Hannestad (2005)
- Trotta & Melchiorri (2005)
- Melchiorri & Serra (2006) 
- Bell, Pierpaoli & Sigurdson (2006)
- De Bernardis et al. (2008)
- Basboll, Bjaelde, Hannestad &Raffelt (2009)
- Smith, Das & Zahn (2012)
- Cyr-Racine & Sigurdson (2014)

- Archidiacono & Hannestad (2014)
- Forastieri, Lattanzi & Natoli (2015)
- Baumann, Green, Meyers & Wallisch (2016)
- Brust, Cui & Sigurdson (2017)
- Lancaster, Cyr-Racine, Knox, Pan (2017)
- Choi, Chiang & Loverde (2018)
- Song, Gonzalez-Garcia & Salvado (2018)
- And many more…
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TABLE I. Scattering and annihilation processes involving
electron neutrinos; the four-momentum of the incoming elec-
tron neutrino is denoted by p; the four-momentum of the other
incoming particle is q; the four-momentum of the outgoing v,
(or lepton) is p', and the four-momentum of the outgoing an-
tilepton is q' (see Fig. 1). p and ~ neutrinos are denoted by v;
(i =p, ~). The invariants s, t, and u are defined by
s =(p+q) =2p q, which is the total energy squared in the
center-of-mass (c.m. ) frame; t =(p —p') =—2p p' is the four-
momentum transfer between the incoming electron neutrino
and outgoing lepton; and u =(p —q') =—2p-q' is the four-
momentum transfer between the incoming electron neutrino
and outgoing antilepton. In computing the matrix-elements
squared, we have assumed that all leptons are ultrarelativistic,
which implies that s+t+u =0; GF-—1.17X10 ' GeV is the
Fermi constant, a =(2 sin~Os + 1) =2.13, b =(2 sin 0~)
=0.212, and sin 8~-—0.23. Both neutral- and charged-current
interactions have been included.

Process

Annihilation
v +7, e +e+
v, +v, —+v;+v;

8GF(bt +au )
8GF'u '

Scattering

v, +e ~v, +e
v, +e+~v, +e
Ve+ Ve ~ve +Ve
Ve +Ve ~V~ +Ve

v, +v;~v, +v;
Ve+ V; ~ve+Vi

86F(as +bu )
8GF(bshe+au )

8GF~s'
86 (4u')
86 s
8GF~u 2

thermal contact with the electromagnetic plasma and
other neutrinos species are 2~2 scattering and annihila-
tion processes that involve neutrinos and/or antineutri-
nos and electrons and/or positrons. Neutrino-nucleon in-
teractions are extremely unimportant because of the scar-
city of nucleons, only about one nucleon per 10 elec-
trons, positrons, neutrinos, and antineutrinos.
Scattering and annihilation processes involving elec-

trons and positrons can heat neutrinos, v+e*+ v+e +—

and v+v~e +e, while scattering and annihilation
processes involving only neutrinos can only thermalize
the neutrino distributions, e.g., v, +v„~v, +v„or v, +v,
~v, +v,. All the annihilation and scattering processes
involving electron neutrinos and their matrix-elements
squared times symmetry factors are displayed in Table I
[7]; the analogous compilation for p and r neutrinos is
given in Table II. In addition, our notation is explained
in the tables and illustrated in Fig. 1.
The p- and ~-neutrino phase-space distribution func-

tions are identical, but not equal to that of the electron
neutrino, since electron neutrinos have both neutral- and
charged-current interactions. We shall assume that the
chemical potentials of all lepton species are very small
ipse « T, which is known for e 's and is expected for all
the neutrino species. This implies that the phase-space
distribution functions of particles and their antiparticles
are identical. This and the fact that the v„and v, distri-
butions are identical means that we need only track the

v+v, e +e
Vi+ Vt ~ve +Ve

v;+vr ~vj+vj

862(bt 2+ cu 2)
8G'u'
86FQ

Scattering
v;+e ~v;+e
v, +e+~vi+e+
v;+ve~v;+ vq

V; +Ve ~Vt +Ve

vi+ vi ~vi+ v,
v;+ v)~ vi+ v
v;+v;~v;+v;
vi +vj ~vi +vj

86F(cs +bu )
86F(bs'+ cu ')

862s2
862u'
862s'
8G
8G'(4 ')
86 u

phase-space distribution functions of electron and muon
neutrinos.
We are now ready to derive the Boltzmann equations

that govern the small distortions to the neutrino phase-
space distribution functions that develop due to e—heat-
ing. Around the time that "neutrinos decouple, " the
temperature of the electromagnetic plasma begins to de-
crease more slowly than R '(t), as e+— pairs become
fewer in number and transfer their entropy to photons
and the remaining e+—pairs. If neutrinos had completely
decoupled by this time, their temperature would simply
decrease as R '(t) and would be dropping relative to the
photon temperature. It is this small temperature
difference that drives residual neutrino-electron interac-
tions to heat the neutrinos. By calculating how well neu-
trinos are able to track the relatively rising photon tem-
perature, we are able to follow the process of neutrino
decoupling.
With these facts in mind, we write the phase-space dis-

P q
(outgoing neutrino or lepton) {other outqoin(j particle)

2
+qI =2p. q
-p'j =-~p-p'I 2

-q' I =-~p.q

P
(incoming neutrino)

q
(other incoming particle)

FIG. 1. The labeling of four-momenta for neutrino interac-
tions, cf. Tables I and II, and our definitions of the Mandelstam
variables s, t, and u.

TABLE II. Same as Table I, except for p and ~ neutrinos.
The four-momenta are denoted in the analogous manner: p is
the four-momentum of the incoming v;; q is the four-
momentum of the other incoming partijle; p' is the four-
momentum of the outgoing v; (or lepton); and q' is the four-
momentum of the outgoing particle that scatters with the v; (or
antilepton) (see Fig. 1); s =(p+q), t =(p —p'), u =(p —q')',
i,j =p, ~, iWj, and c =(2sin'0~ —1) =0.292.

Process

Annihilation

4-Fermion Interaction

2

act only via gravity. In this paper we investigate a class
of models which feature extra, non-standard, neutrino in-
teractions. In these models, neutrinos interact strongly
with a new scalar boson, which is brought into thermal
equilibrium though its coupling to the neutrinos. Rather
than free-streaming, the neutrinos form a tightly coupled
fluid with the new scalar.

These models generically have non-standard values for
N eff

ν , but perhaps more interestingly, the absence of neu-
trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled
fluid, they are fully characterized by density and ve-
locity perturbations, and anisotropic stress is negligible.
In [21, 22] it was shown that the current Wilkinson Mi-
crowave Anisotropy Probe (WMAP) CMB measurements
already have some sensitivity to this effect. This is sig-
nificant because in addition to being able to infer the
presence of relativistic degrees of freedom, we may now
also be able to say something about the interactions of
the particles which make up that relativistic energy den-
sity.

In this paper we address the question: how much rel-
ativistic energy density is there, and what fraction of it
must consist of weakly interacting particles? We answer
this question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other
with bosons, through tree level scalar or pseudo-scalar
couplings of the form

Lνφ = hijνiνjφ + gijνiγ5νjφ, (1)

where the boson φ is taken to be light or massless1. Such
couplings arise in Majoron-like models, viable examples
of which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a
low scale, which occurs late in the history of the universe
[19, 25]. In order to be as model independent as possi-
ble, we assume the new couplings are fixed independently
of the neutrino mass. We also make no distinction be-
tween g or h type couplings, nor between neutrinos and
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson

1 Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].
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FIG. 1: The interactions that keep the neutrinos and the
scalar coupled. If the scalar is heavier than mν , the process
ν ↔ νφ is replaced by φ ↔ νν.

decay [27] limits are |g| ! 10−2. Neutrinoless double
beta decay sets a limit gee < 10−4 [28], but does not
constrain other elements of the coupling matrix gαβ.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g ∼ 10−5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless φ boson, scalar couplings could medi-
ate long-range forces with possible cosmological conse-
quences [30, 31], while pseudo-scalar couplings mediate
spin-dependent long-range forces, which have no net ef-
fect on an unpolarized medium2. However, if the φ boson
has even a tiny mass H0 ≪ mφ ≪ 1 eV the interaction is
short ranged and insignificant over cosmological distance
scales.

The φ boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ν − φ sys-
tem may stay in thermal contact until late times. The
processes involved, shown in Figure 1, are νφ ↔ νφ,
νν ↔ φφ, νν ↔ νν, and either ν ↔ νφ or νν ↔ φ,
depending on whether the scalar mass, mφ, is smaller or
larger than the neutrino mass, mν

3. For sufficiently large
couplings, the ν–φ system will remain in thermal contact
until the temperature drops below mν or mφ. At this
point the heavier of the two particles will annihilate or
decay.

The possibility of altering the relativistic energy den-
sity through neutrino decay has been considered in [33]4,

2 For pseudo-scalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3 We set all three neutrino species to a common mass mν , with

mν ≫

√

δm2
sol

,
√

δm2
atm . When this approximation does not

hold, the effects of neutrino mass are negligible in present cos-
mological data.

4 See also, Ref. [34], which studies the case of a scalar boson de-
caying into neutrinos, thus distorting the usual thermal neutrino
distribution. Related scenarios, in which hot dark matter is pro-
duced by the decay of heavier particles, are examined in Ref. [35].

New Unknown Interaction

2

] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in
detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.

NEUTRINO INTERACTIONS In addition to
their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g

2
⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X

we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.

The key quantity characterizing the interactions in
the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G

2
e↵T

2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.

The opacity of the neutrino medium e↵ectively defines
a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e

�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.

EVOLUTION OF FLUCTUATIONS To deter-

FIG. 1: Visibility function for self-interacting neutrinos for
di↵erent values of the e↵ective coupling constant Ge↵ . Here,
we assume three neutrinos species. Note that that some of
the visibility functions have been rescale to fit in the frame.
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FIG. 2: Evolution of neutrino and photon fluctuations in
configuration space for both self-interacting neutrinos (blue
solid line) and standard free-streaming neutrinos (black dash-
dotted line). Here we have adopted a Planck cosmology [? ].
The phase shift and amplitude suppression of the photon fluc-
tuation associated with free-streaming neutrinos are readily
noticeable.

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density
and velocity fluctuations of the neutrinos are una↵ected
by the self-interaction, the moments with l � 2 are cor-
rected by a damping term proportional to ⌧̇⌫ which ef-
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For the Yukawa interactions between a real scalar field and massless neutrinos:

Lint = g

ij

�⌫̄

i

⌫

j

. (1)

I. ⌫i + ⌫j ! ⌫k + ⌫l SCATTERING

1

4

X

spins

|M|2
⌫i+⌫j!⌫k+⌫l

=

|g
ik

|2|g
jl

|2t2

(t�m

2
�

)

2
+

|g
il

|2|g
jk

|2u2

(u�m

2
�

)

2
�

(g

ik

g

jl

g

⇤
il

g

⇤
jk

+ g

⇤
ik

g

⇤
jl

g

il

g

jk

)(t

2
+ u

2 � s

2
)

4(u�m

2
�

)(t�m

2
�

)

(2)

II. ⌫̄i + ⌫̄j ! ⌫̄k + ⌫̄l SCATTERING

1

4

X

spins

|M|2
⌫̄i+⌫̄j!⌫̄k+⌫̄l

=

|g
ik

|2|g
jl

|2t2

(t�m

2
�

)

2
+

|g
il

|2|g
jk

|2u2

(u�m

2
�

)

2
�

(g

ik

g

jl

g

⇤
il

g

⇤
jk

+ g

⇤
ik

g

⇤
jl

g

il

g

jk

)(t

2
+ u

2 � s

2
)

4(u�m

2
�

)(t�m

2
�

)

(3)

III. ⌫i + ⌫̄j ! ⌫k + ⌫̄l SCATTERING

1

4

X

spins

|M|2
⌫i+⌫̄j!⌫k+⌫̄l

=

|g
ij

|2|g
kl

|2s2

(s�m

2
�

)

2
+

|g
ik

|2|g
jl

|2t2

(t�m

2
�

)

2
+

(g

ij

g

kl

g

⇤
ik

g

⇤
jl

+ g

⇤
ij

g

⇤
kl

g

ik

g

jl

)(s

2
+ t

2 � u

2
)

4(s�m

2
�

)(t�m

2
�

)

(4)

IV. COLLISION TERM CALCULATION

Let us compute the momentum-averaged collision term for neutrino-neutrino scattering. We start from the general

expression:

¯
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One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-
cal data inform us about possible interactions in the neu-
trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?
? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters c

e↵

and c
vis

, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in

detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.
NEUTRINO INTERACTIONS In addition to

their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g2⌫/M

2

X . In this scenario, the
possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X
we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.
The key quantity characterizing the interactions in

the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G2

e↵

T 2

⌫ , where all
the order unity numerical factors have been absorbed in
G

e↵

/ G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > G

F

, where G
F

is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.
The opacity of the neutrino medium e↵ectively defines

a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
G

e↵

in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.
EVOLUTION OF FLUCTUATIONS To deter-

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density

Low Energy

where L2
l is the strongest upper bound for

P
!jgl!j2 (see

Table III). From this constraints, we assume the conserva-
tive limit, where the upper bound applies not only for the
sum,

P
!jgl!j2, but also for the individual elements, as

jgl!j:

 jgl!j< Ll; 8 ! ! e;"; #: (35)

D. Mass basis

All the results obtained so far are written in the flavor
basis. However, in many cases, theoretical analyses are
easier on the mass basis. We have two possible cases:
Dirac or Majorana neutrinos. In this section we assume
Majorana neutrinos to transform our bounds to the mass
basis.

We can translate the previous results to the mass basis
using the transformation matrix U [20]:

 U !
c12c13 s12c13 s13e"i$

"s12c23 " c12s23s13ei$ c12c23 " s12s23s13ei$ s23c13

s12s23 " c12c23s13ei$ "c12s23 " s12c23s13ei$ c23c13

0
B@

1
CA# diag$ei!1=2; ei!2=2; 1% (36)

where cij ! cos$%ij% and sij ! sin$%ij%. The neutrino mass
matrix is given by M ! diag$m1; m2; m3% and for a given
mass m1, we can written all other masses as a function of
m1 and the squared mass differences as follows

 !m2
12 & m2

2 "m2
1 ! !m2

' and

!m2
23 & m2

3 "m2
2 ! !m2

atm:
(37)

Although the mass differences and angles have been mea-

sured experimentally [20], we have no information on the
Majorana phases $, !1, and !2.

To calculate the bounds in the mass basis, we will use the
transformation rule for Majorana neutrinos

 G ! UTgU (38)

where g is the neutrino-Majoron coupling matrix in the
flavor basis and G is the neutrino-Majoron coupling matrix
in the mass basis.

Although it is not valid in general, many models [34–
36] have the following property (at least in some limit)

 G ! diag$g1; g2; g3% / M ! diag$m1; m2; m3%: (39)

Following [37], we calculate the allowed region for
different values of $, !1, and !2 and then choose the union
of these regions as the final result, valid for any value of the
phases, as shown in Fig. 3.
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FIG. 2. At left (at right), normalized electron neutrino (muon neutrino) spectra for muon decay in the SM is the solid curve and with
Majoron emission only is the dashed curve. In both cases we assume a diagonal g!&.

TABLE III. Comparison between the strongest bounds (in-
cluding the scalar ') obtained here and the previous bounds
from the same processes. All bounds are at 90% C.L. and the
previous bounds are from [14–16].

Previous Bounds Revised Bounds
P
!jge!j2 < 3# 10"5 P

!jge!j2 < 5:5# 10"6
P
!jg"!j2 < 2:4# 10"4 P

!jg"!j2 < 4:5# 10"5

none
P
!jg#!j2 < 5:5# 10"2

A. P. LESSA AND O. L. G. PERES PHYSICAL REVIEW D 75, 094001 (2007)

094001-6

Lessa and Peres (2007)
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fluid to particles free-streaming across the Universe.

NEUTRINO INTERACTIONS As an example, we
consider a scenario in which all neutrinos, in addition to
their regular SM interactions, have non-negligible self-
interactions due to their coupling g⌫ to a new massive
mediator particle [10]. When the temperature of the
neutrinos falls significantly below the mediator mass, one
can integrate the latter out and model the interaction as a
four-fermion vertex controlled by a dimensionful coupling
constant G⌫ [11]. We note that SN1987A only places
a weak constraint (see e.g. Ref. [12]) on neutrino self-
interaction, leading to G⌫.144MeV�2 [13].

In the early Universe, self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ ⌘ �aG2

e↵T
5
⌫ ,

where all order unity numerical factors have been ab-
sorbed in Ge↵ / G⌫ , T⌫ is the temperature of the neu-
trino bath, and a is the scale factor describing the expan-
sion of the Universe. In this work, we focus our atten-
tion on the case where G⌫ � GF, where GF is the Fermi
constant. Therefore, we justifiably neglect the contribu-
tions from electroweak processes to the neutrino opacity
in what follows. The opacity of the neutrino medium
implicitly defines a neutrino visibility function given by
g̃⌫(z) ⌘ �⌧̇⌫e�⌧⌫ . As in the photon case, the visibility
function can be thought of as a probability density func-
tion for the redshift at which a neutrino begins to free-
stream. Compared to the standard case, the introduc-
tion of a new type of interaction in the neutrino sector
can push the peak of the neutrino visibility function to
considerably lower redshift.

EVOLUTION OF FLUCTUATIONS To determine
the impact of neutrino self-interaction on cosmological
observables, we evolve the neutrino fluctuation equations
from their early tightly-coupled stage to their late-time
free-streaming solution. By prohibiting free-streaming,
neutrino self-interactions severely damp the growth of
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FIG. 1. Evolution of neutrino and photon fluctuations in
configuration space for both self-interacting neutrinos (blue
solid line) and standard free-streaming neutrinos (black dash-
dotted line). Here we have adopted a Planck cosmology [3].
The phase shift and amplitude suppression of the photon fluc-
tuation associated with free-streaming neutrinos are readily
noticeable.

anisotropic stress associated with the quadrupole and
higher moments of the neutrino distribution function.
Indeed, while the equations for the density and veloc-
ity fluctuations of the neutrinos are una↵ected by the
self-interaction, the moments with l � 2 are corrected
by a damping term proportional to ⌧̇⌫ which e↵ectively
suppresses their growth,

Ḟ⌫2 =
8

15
✓⌫ +

8

15
k� � 3

5
kF⌫3 + ↵2⌧̇⌫F⌫2, (1)

Ḟ⌫l =
k

2l + 1

⇥
lF⌫(l�1) � (l + 1)F⌫(l+1)

⇤
+ ↵l⌧̇⌫F⌫l, (2)

where we follow closely the notation of [14] in syn-
chronous gauge. The ↵ls are order unity l-dependent
coe�cients that depends on the specific model used for
neutrino interactions. In our analysis, we set these co-
e�cients to unity; in practice, any change to ↵2 can be
reabsorbed into Ge↵ while changes to ↵l for l � 3 have
very little impact on the CMB. We solve these equa-
tions numerically together with the standard perturba-
tion equations for the photons, baryons and dark matter
using a modified version of the code CAMB [15]. At early
times, the tightly-coupled neutrino equations are very
sti↵ and we use a tight-coupling approximation which
sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and F⌫l = 0 for l � 3
[16]. We note that the neutrino opacity is related to the
commonly used viscosity parameter c2vis though the re-
lation c2vis = (1/3)(1 � (15/8)⌧̇⌫↵2F⌫2/(✓⌫ + k�)). As
long as neutrinos form a tightly-coupled fluid, the sec-
ond term is very close to unity and c2vis approaches zero.
After, the onset of neutrino free-streaming, the second
term becomes vanishingly small and c2vis ! 1/3.
We compare in Fig. 1 the evolution in configuration

space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential

FIG. 2. CMB Temperature power spectra for di↵erent values
of Ge↵ . Here we have adopted a Planck cosmology [3] with
three neutrinos and show the corresponding standard ⇤CDM
spectrum (solid black line) for comparison. We also display
the temperature spectrum (dashed red line) for the interacting
neutrino cosmology given in Table I.

Kolb and Turner 
(1987)

Beyond Free-streaming Neutrinos
See e.g. Cherry, Friedland & Shoemaker 
(2014), Ng & Beacom (2014)
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FIG. 1. Present constraints and future sensitivity to ⌫SI in terms of neutrino coupling, g, and mediator mass, M , with diagonal
dotted contours shown for values of the dimensionful coupling G. The blue shaded regions are excluded by astrophysical
and cosmological considerations based on SN 1987A [6], BBN [37], and the CMB [38, 39]. The pink dashed lines indicate
flavor-dependent limits based on laboratory measurements of meson and lepton decays [40]; we consider only the weakest limit,
for ⌫⌧ , to be robustly excluded for all flavors, and it is shaded. The red shaded region is excluded based on measurement of
Z-boson decay [9]. The gray shaded region indicates the non-perturbative regime. The orange lines are contours of unit optical
depth for di↵erent initial neutrino energies (Eq. 10), indicating the approximate boundary of the parameter space above which
IceCube is sensitive to ⌫SI. The squares represent the example parameters (given in Table I) used in our calculations.

be in thermal equilibrium, changing the number of rela-
tivistic degrees of freedom [37, 56], which can be tested
through Big Bang Nucleosynthesis (BBN). We show the
“maximally conservative” case from Ref. [37], which as-
sumed vector boson mediators. The BBN limits extend
down to g ⇠ 10�8. The presence of ⌫SI can also change
the free-streaming property of the C⌫B, which can leave
an imprint on the observed Cosmic Microwave Back-
ground (CMB). Strong constraints on ⌫SI have been set
in Refs. [38, 39]. In the mediator mass range we focus on,
the constraint was derived assuming a heavy mediator,
and is G . 100 GeV�2, which is much more stringent
than the SN 1987A limit. In Ref. [38, 39], the C⌫B is
constrained to be free-streaming untill redshift ⇠ 2⇥105,
where

p
s ⇠ 10�4 MeV. Therefore, the domain of appli-

cability of the CMB limit would end at a vertical bound-
ary (not shown) at M ⇠ 10�4 MeV.

Limits on ⌫SI can also be set by observations of labora-
tory processes. Even if the neutrinos are not detected di-
rectly, their presence can be inferred by precise measure-
ments of other particles. For example, in the presence of
⌫SI, a mediator can be produced by bremsstrahlung from
an external neutrino [33, 40, 72]; a massive mediator will
then decay into other particles [7–9]. In Majoron-type
models, the best laboratory constraints come from meson
and lepton decays, e.g., Refs. [40, 72], but they depend on
the particular flavor coupling, g↵� , where ↵,� = e, µ, ⌧ ,
and are valid only up to the mass of the meson or lep-

ton, e.g., kaons or tau leptons. The couplings involving
⌫⌧ are the least constrained, so we regard them as the
most robust. Accordingly, they are shaded in Fig. 1 to
indicate exclusion for all flavors.

An flavor-independent constraint can be obtained from
Z-boson decay. If a heavy mediator is assumed, the limit
is quite strong, G ⇠ GF , as shown in Refs. [7–9], though
the domain of applicability of that e↵ective theory calcu-
lation ends below the Z-boson mass. We emphasize that
though this is nominally a very strong limit, it does not
rule out all of the parameter space above the diagonal
line G ⇠ GF ⇠ 10�5 GeV�2. If the calculation is ex-
tended to allow a light mediator, following Ref. [33], the
result for the scalar mediator case (not shown) is compa-
rable to the g↵⌧ constraint in Fig. 1 for mediator masses
below the mass of Z-boson.

This combination of constraints shows a window
of parameter space in the MeV range where model-
independent astrophysical or cosmological constraints
could be improved. The IceCube sensitivity, shown ap-
proximately by the three orange lines in Fig. 1 and calcu-
lated in the next section, lies in this region. Because both
the astrophysical neutrino beam and the C⌫B targets are
expected to contain all flavors of neutrinos, the IceCube
sensitivity is complementary to the flavor-dependent lab-
oratory limits.

Ng & Beacom (2014). See also Arcadi et al. (2018)
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] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in
detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.

NEUTRINO INTERACTIONS In addition to
their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g

2
⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X

we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.

The key quantity characterizing the interactions in
the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G

2
e↵T

2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.

The opacity of the neutrino medium e↵ectively defines
a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e

�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.

EVOLUTION OF FLUCTUATIONS To deter-

FIG. 1: Visibility function for self-interacting neutrinos for
di↵erent values of the e↵ective coupling constant Ge↵ . Here,
we assume three neutrinos species. Note that that some of
the visibility functions have been rescale to fit in the frame.
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FIG. 2: Evolution of neutrino and photon fluctuations in
configuration space for both self-interacting neutrinos (blue
solid line) and standard free-streaming neutrinos (black dash-
dotted line). Here we have adopted a Planck cosmology [? ].
The phase shift and amplitude suppression of the photon fluc-
tuation associated with free-streaming neutrinos are readily
noticeable.

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density
and velocity fluctuations of the neutrinos are una↵ected
by the self-interaction, the moments with l � 2 are cor-
rected by a damping term proportional to ⌧̇⌫ which ef-
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eter of the neutrino fluid respectively. These analysis
found consistency with the free-streaming limit. How-
ever, by modeling these parameters as constant through-
out the history of the Universe they could not capture the
realistic physics of neutrino decoupling. We incorporate
here the physics necessary to follow in detail the dynam-
ics of the transition of neutrinos from a tightly-coupled
fluid to particles free-streaming across the Universe.
NEUTRINO INTERACTIONS In addition to their
regular SM interactions, we assume that all of the neu-
trinos have non-negligible self-interactions due to their
interaction with a new heavy mediator X. We take X
to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can in-
tegrate out the heavy mediator to compute low energy
interactions and model the interaction as a four-fermion
vertex controlled by a dimensionfull coupling constant
G⌫ ⌘ g2X/M2

X . In this scenario, the possible emission of
a (light relative to the decaying species) X particle by
neutrinos in the final state of Kaon and W decay leads
to upper bounds on the value of gX . For a vector bo-
son, we must have gX < 8 ⇥ 10�5(MX/MeV) [21], while
for a scalar X we have gX < 0.014 [22]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [23].

In the early Universe, self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = �aG2

e↵T
5
⌫ ,

where all order unity numerical factors have been ab-
sorbed in Ge↵ / G⌫ , T⌫ is the temperature of the neu-
trino bath, and a is the scale factor describing the expan-
sion of the Universe. In this work, we focus our atten-
tion on the case where G⌫ � GF, where GF is the Fermi
constant. Therefore, we justifiably neglect the contribu-
tions from electroweak processes to the neutrino opacity
in what follows. The opacity of the neutrino medium
implicitly defines a neutrino visibility function given by
g⌫(z) ⌘ �⌧̇⌫e�⌧⌫ . As in the photon case, the visibil-
ity function can be thought of as a probability density
function for the redshift at which a neutrino begins to
free-stream. Compared to the standard case, the intro-
duction of a new type of interaction in the neutrino sector
can push the peak of the neutrino visibility function to
considerably lower redshift.
EVOLUTION OF FLUCTUATIONS To determine
the impact of neutrino self-interaction on cosmological
observables, we evolve the neutrino fluctuation equations
from their early tightly-coupled stage to their late-time
free-streaming solution. By prohibiting free-streaming,
neutrino self-interactions severely damp the growth of
anisotropic stress associated with the quadrupole and
higher moments of the neutrino distribution function.
Indeed, while the equations for the density and veloc-
ity fluctuations of the neutrinos are una↵ected by the
self-interaction, the moments with l � 2 are corrected
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FIG. 1: Evolution of neutrino and photon fluctuations in
configuration space for both self-interacting neutrinos (blue
solid line) and standard free-streaming neutrinos (black dash-
dotted line). Here we have adopted a Planck cosmology [4].
The phase shift and amplitude suppression of the photon fluc-
tuation associated with free-streaming neutrinos are readily
noticeable.

by a damping term proportional to ⌧̇⌫ which e↵ectively
suppresses their growth,

Ḟ⌫2 =
8

15
✓⌫ +

8

15
k� � 3

5
kF⌫3 +

9

10
↵2⌧̇⌫F⌫2, (1)

Ḟ⌫l =
k

2l + 1

⇥
lF⌫(l�1) � (l + 1)F⌫(l+1)

⇤
+ ↵l⌧̇⌫F⌫l, (2)

where we follow closely the notation of [24] in syn-
chronous gauge. The ↵ls are order unity l-dependent
coe�cients that depends on the specific model used for
neutrino interactions. In our analysis, we set these co-
e�cients to unity; in practice, any change to ↵2 can be
reabsorbed into Ge↵ while changes to ↵l for l � 3 have
very little impact on the CMB. We solve these equa-
tions numerically together with the standard perturba-
tion equations for the photons, baryons and dark matter
using a modified version of the code CAMB [25]. At early
times, the tightly-coupled neutrino equations are very
sti↵ and we use a tight-coupling approximation which
sets F⌫2 = 16(✓⌫ + k�)/(27↵2⌧̇⌫) and F⌫l = 0 for l � 3
[26]. We note that the neutrino opacity is related to the
commonly used viscosity parameter c2vis though the re-
lation c2vis = (1/3)(1 � (27/16)⌧̇⌫↵2F⌫2/(✓⌫ + k�)). As
long as neutrinos form a tightly-coupled fluid, the sec-
ond term is very close to unity and c2vis approaches zero.
After, the onset of neutrino free-streaming, the second
term becomes vanishingly small and c2vis ! 1/3.
We compare in Fig. 1 the evolution in configuration

space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctu-
ations [12]. For each Fourier mode of the photon fluc-
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One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-
cal data inform us about possible interactions in the neu-
trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?
? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters c

e↵

and c
vis

, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in

detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.
NEUTRINO INTERACTIONS In addition to

their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g2⌫/M

2

X . In this scenario, the
possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X
we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.
The key quantity characterizing the interactions in

the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G2

e↵

T 2

⌫ , where all
the order unity numerical factors have been absorbed in
G

e↵

/ G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > G

F

, where G
F

is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.
The opacity of the neutrino medium e↵ectively defines

a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
G

e↵

in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.
EVOLUTION OF FLUCTUATIONS To deter-

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density

Cyr-Racine & Sigurdson (2014)
Oldengott, Rampf & Wong (2015)

Neutrino visibility function

⌧̇⌫ / �aG2
e↵T

5
⌫

which neutrinos begin free-streaming before the onset of Big Bang nucleosynthesis is not too
surprising. That this mode spans values of the e↵ective neutrino coupling constant that are
more than seven orders of magnitude above the standard Fermi constant is simply a reflection
that the scales probed by the current CMB data are insensitive to the onset of neutrino free-
streaming if it happens early enough. Indeed, for Ge↵ . 10�4.5MeV�2, neutrino decoupling
occurs before the Fourier modes probed by the Planck data enter the causal horizon, implying
that they are una↵ected by the new neutrino interactions and receive the standard phase and
amplitude shift associated with neutrino free-streaming. We illustrate this in figure 5 where
we show the neutrino visibility function g⌫(⌧) ⌘ �⌧̇⌫e

�⌧⌫ as a function of conformal time.7

The gray band shows the approximate time interval in which the multipoles 410 < l < 2500
enter the causal horizon. This multipole range corresponds to scales encompassing all well-
measured CMB temperature peaks except for the first one. We see that the visibility functions
of models with Ge↵ . 10�4.5MeV�2 have no overlap with the time interval at which the modes
probed by the current Planck data are entering the horizon. This explains why the posterior
shown in figure 1 flattens out for this range of neutrino self-interacting strength.

The sharp suppression of the ⇤CDM mode of the posterior distribution for Ge↵ >
10�4.5MeV�2 indicate that these values delay neutrino free-streaming long enough for the
length scales probed by the CMB damping tail to enter the horizon. This is supported by
figure 5 where the red dashed line shows the models corresponding to the 95% upper limit
of the ⇤CDM mode (Ge↵ ⇡ 10�3.5MeV�2), whose visibility function has significant overlap
with the modes probed by the CMB. This indicates that the allowed upper limit on Ge↵

within the ⇤CDM mode strongly depends on the highest multipole probed by the data since
higher lmax are capable of probing an earlier onset of neutrino free streaming and thus smaller
values of Ge↵ . It is thus not surprising that our constraint on the ⇤CDM mode is similar to
that from ref. [58] since the value of lmax between the Planck 2013 and 2015 data release did
not appreciably change.

The deep trough in the posterior distribution for �3.2 . log10

�
Ge↵MeV2

�
. �2.3

indicate that CMB data strongly disfavor neutrino decoupling occurring while the modes
corresponding to the Silk damping tail are entering the horizon. Indeed, models with Ge↵

in this range have a neutrino visibility function peaking within the gray band of figure 5.
The dot-dashed blue line shows the neutrino visibility function for the best fit model within
the interacting neutrino mode. We observe that this visibility function peaks right as the
multipoles corresponding to the first CMB temperature peak (green shaded region) begin to
enter the Hubble horizon. In this case, none of the CMB temperature peaks in the range
410 < l < 2500 receives the phase and amplitude shift usually associated with neutrino
free streaming, hence requiring the other cosmological parameters, notably H0, As, and ns,
to absorb the resulting di↵erence in the temperature spectrum (see figure 7). From the
perspective of CMB polarization, the visibility function of the best fit interacting neutrino
model has a maximum near the epoch when the second peak of the E-mode polarization
spectrum at l ⇡ 370 is entering the horizon.

To understand the impact of this late neutrino decoupling, it is instructive to look at
the CMB temperature and E-mode polarization spectra on the relevant scales (l . 410),
as shown in figure 6. There, we observe that the interacting neutrino mode predicts a
slightly lower amplitude for the first peak of the temperature spectrum compared to the
standard ⇤CDM cosmology, while displaying more power than the standard paradigm at low

7Much like the better-known CMB visibility function, the neutrino visibility function is a probability
density function for the time at which neutrinos last scatter.
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4

dependence of the right-hand side of Eq. (7) should be
vanishingly small at early times when neutrinos form a
highly-relativistic tightly-coupled fluid. This allows us
to neglect the momentum-dependence of ⌅⌫ in the com-
putation of the collision integrals, an approximation that
was found to be accurate in Ref. [65]. We do retain, how-
ever, the momentum dependence of ⌅⌫ in the left-hand
side of the Boltzmann equation.

In this work, we only consider scalar perturbations and
thus expand the angular dependence of the ⌅̃⌫ variable
(the Fourier transform on ⌅⌫) in Legendre polynomials
Pl(µ)

⌅̃⌫(k,p, ⌧) =
1X

l=0

(�i)l(2l + 1)⌫l(k, p, ⌧)Pl(µ), (8)

where µ is the cosine of the angle between k and p. Be-
fore presenting the equation of motion for the neutrino
multipole moments ⌫l, we discuss the structure of the
collision integrals.

B. Collision term

The details of the collision term calculation for the
⌫⌫ ! ⌫⌫ process is given in Appendix C. As explained
above, the main simplification entering this calculation
is the use of the thermal approximation in which we ne-
glect the momentum dependence of the ⌫l variables. Un-
der this assumption, the collision term at first order in

perturbation theory C
(1)
⌫ can be written as

C(1)
⌫ [p] =

G2
e↵T 6

⌫

4
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where the functions A(x), Bl(x), and Dl(x) are given
in Eqs. (C52), (C53), and (C54), respectively. Here, we
have adopted the notation T⌫ ⌘ T̄⌫ to avoid clutter.

C. Boltzmann equation for self-interacting
neutrinos

Substituting the collision term from Eq. (9) into
Eq. (B10) and performing the µ integral yields the equa-
tion of motion for the di↵erent neutrino multipoles ⌫l.

They can be summarized in the following compact form
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where we have introduced the comoving momentum q ⌘
ap, q = |q|, ✏ =

p
q2 + a2m2

⌫ , a is the scale factor nor-
malized to a = 1 today, �mn is the Kronecker delta func-
tion, and T⌫,0 is the current (a = 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to ⌫l is a consequence of our use of the
thermal approximation. We note that energy and mo-
mentum conservation ensures that A+B0 �2D0 = 0 and
A + B1 � 2D1 = 0, respectively.

As is standard in analyses of massive neutrino cosmolo-
gies, we shall consider our neutrino sector to be composed
of a mix of massive and massless neutrinos. In the mass-
less case (q = ✏), one can integrate Eq. (10) over the
comoving momentum to yield a simpler neutrino multi-
pole hierarchy [54, 64]
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and where we denoted the massless perturbations as Fl

to distinguish them from the massive neutrino variables
⌫l.

We implement these modified Boltzmann equations in
the cosmological code CAMB [108]. For computational
speed, we precompute the functions A, Bl and Dl on a
grid of q/T⌫,0 values and use an interpolation routine to
access them when solving the cosmological perturbation
equations. As in standard CAMB, we use a sparse 3-point
grid of q/T⌫,0 values to evaluate the integrals required
to compute the energy density and momentum flux of
massive neutrinos. We have checked convergence of our
scheme against a 5-point momentum grid and found neg-
ligible di↵erence in the CMB and matter power spec-
trum in the parameter space of interest. We also precom-
pute the coe�cient ↵l and tabulate them. We emphasize
that energy and momentum conservation ensures that
↵0 = ↵1 = 0, which we have checked with high accuracy.

For simplicity, we assume throughout this paper that
the neutrino sector contains one massive neutrino, with
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dependence of the right-hand side of Eq. (7) should be
vanishingly small at early times when neutrinos form a
highly-relativistic tightly-coupled fluid. This allows us
to neglect the momentum-dependence of ⌅⌫ in the com-
putation of the collision integrals, an approximation that
was found to be accurate in Ref. [65]. We do retain, how-
ever, the momentum dependence of ⌅⌫ in the left-hand
side of the Boltzmann equation.

In this work, we only consider scalar perturbations and
thus expand the angular dependence of the ⌅̃⌫ variable
(the Fourier transform on ⌅⌫) in Legendre polynomials
Pl(µ)

⌅̃⌫(k,p, ⌧) =
1X

l=0

(�i)l(2l + 1)⌫l(k, p, ⌧)Pl(µ), (8)

where µ is the cosine of the angle between k and p. Be-
fore presenting the equation of motion for the neutrino
multipole moments ⌫l, we discuss the structure of the
collision integrals.

B. Collision term

The details of the collision term calculation for the
⌫⌫ ! ⌫⌫ process is given in Appendix C. As explained
above, the main simplification entering this calculation
is the use of the thermal approximation in which we ne-
glect the momentum dependence of the ⌫l variables. Un-
der this assumption, the collision term at first order in

perturbation theory C
(1)
⌫ can be written as
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where the functions A(x), Bl(x), and Dl(x) are given
in Eqs. (C52), (C53), and (C54), respectively. Here, we
have adopted the notation T⌫ ⌘ T̄⌫ to avoid clutter.

C. Boltzmann equation for self-interacting
neutrinos

Substituting the collision term from Eq. (9) into
Eq. (B10) and performing the µ integral yields the equa-
tion of motion for the di↵erent neutrino multipoles ⌫l.

They can be summarized in the following compact form
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where we have introduced the comoving momentum q ⌘
ap, q = |q|, ✏ =

p
q2 + a2m2

⌫ , a is the scale factor nor-
malized to a = 1 today, �mn is the Kronecker delta func-
tion, and T⌫,0 is the current (a = 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to ⌫l is a consequence of our use of the
thermal approximation. We note that energy and mo-
mentum conservation ensures that A+B0 �2D0 = 0 and
A + B1 � 2D1 = 0, respectively.

As is standard in analyses of massive neutrino cosmolo-
gies, we shall consider our neutrino sector to be composed
of a mix of massive and massless neutrinos. In the mass-
less case (q = ✏), one can integrate Eq. (10) over the
comoving momentum to yield a simpler neutrino multi-
pole hierarchy [54, 64]
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and where we denoted the massless perturbations as Fl

to distinguish them from the massive neutrino variables
⌫l.

We implement these modified Boltzmann equations in
the cosmological code CAMB [108]. For computational
speed, we precompute the functions A, Bl and Dl on a
grid of q/T⌫,0 values and use an interpolation routine to
access them when solving the cosmological perturbation
equations. As in standard CAMB, we use a sparse 3-point
grid of q/T⌫,0 values to evaluate the integrals required
to compute the energy density and momentum flux of
massive neutrinos. We have checked convergence of our
scheme against a 5-point momentum grid and found neg-
ligible di↵erence in the CMB and matter power spec-
trum in the parameter space of interest. We also precom-
pute the coe�cient ↵l and tabulate them. We emphasize
that energy and momentum conservation ensures that
↵0 = ↵1 = 0, which we have checked with high accuracy.

For simplicity, we assume throughout this paper that
the neutrino sector contains one massive neutrino, with
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FIG. 2. Snapshot of neutrino and photon density fluctuations in configuration space at a fixed redshift. The black dot-dashed
line shows the standard free-streaming neutrino fluctuation while the green dashed line displays the corresponding photon
density fluctuation. The solid blue and red dotted lines show the density fluctuation of self-interacting neutrinos and the
corresponding photon perturbation, respectively. These two lines lie on top of one another since both neutrinos and photons
behave as tightly-coupled fluids at the epoch shown here. The di↵erence between the green dashed and the red dotted lines
readily illustrates the phase shift and amplitude suppression of the photon fluctuation associated with free-streaming neutrinos.
Here we have adopted a Planck cosmology [3].

neutrinos solely couple to CMB photons via the gravita-
tional potentials, which themselves depend on integrals
of the neutrino distribution function. While it would be
interesting to study and quantify the impact of neutrino
spectral distortions on the CMB (see e.g. [57]), we leave
this possibility to future work and assume the form of
Eqs. (4) and (5) to be valid throughout neutrino decou-
pling.

We solve Eqs. 4 and 5 numerically together with the
standard perturbation equations for the photons, baryons
and dark matter using a modified version of the code
CAMB [58]. At early times, the tightly-coupled neutrino
equations are very sti↵ and we use a tight-coupling ap-
proximation which sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and
F⌫l = 0 for l � 3 [59]. We note that the neutrino opacity
is related to the commonly used viscosity parameter c2vis
though the relation c2vis = (1/3)(1�(15/8)⌧̇⌫↵2F⌫2/(✓⌫+
k�)). As long as neutrinos form a tightly-coupled fluid,
the second term is very close to unity and c2vis approaches
zero. After, the onset of neutrino free-streaming, the sec-

ond term becomes vanishingly small and c2vis ! 1/3. This
illustrates that modeling nonstandard neutrino physics
with a constant c2vis 6= 1/3 has no intuitive meaning in
terms of simple particle scattering, hence shedding doubt
on the usefulness of this parametrization.

We compare in Fig. 2 the evolution in configuration
space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctua-
tions [13, 19, 20]. For each Fourier mode of the photon
fluctuations, the magnitude of these two e↵ects is directly
proportional to the free-streaming fraction of the total
radiation energy density when the Fourier mode enters
the Hubble horizon. If neutrino free-streaming is delayed
due to their self-interaction until redshift z⌫⇤, Fourier
modes of photon fluctuations entering the horizon before
z⌫⇤ would not be a↵ected by the standard shift in am-
plitude and phase. On the other hand, the amplitude of
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appearing on its right hand side is the one provided
by the photon density perturbation (112). As for the
left hand side, where Ψ = Φ+ + Φ−, the only delta-
function comes from the double derivative of the term
(

χ2 − 1
3

)

pΦ θ
(

1√
3
− |χ|

)

in eq. (106). The equality of

these contributions requires

pΦ = −
√

3(1 − Rν)pγ . (114)

Substituting eq. (106) in (113) and eliminating pΦ with
the relation above, we obtain

pγ =
1

1 − 2Rν

[

3

2
ζin −

∫ 1

−1
dχF−(χ)

]

. (115)

Calculating pΦ from the last two equations is somewhat
easier than from eq. (107).

Now we have all the analytic tools to analyze how neu-
trinos affect CMB perturbations. The evolution of metric
perturbations without neutrinos is given by eqs. (108–
109). Then the photon density Green’s function follows
from eqs. (112, 115) as

d̄(Rν→0)
γ = −3ζin

[√
3 θ
(

1√
3
− |χ|

)

−

− 1
2 δD

(

|χ|− 1√
3

)]

.

(116)

Its Fourier transform (93) leads to the photon density
Fourier modes in the radiation era:

d(Rν→0)
γ (τ, k) = −3ζin

(

2 sinϕs

ϕs
− cosϕs

)

, (117)

with ϕs = kτ/
√

3. In particular, without neutrinos the
photon density modes oscillate under the acoustic hori-
zon (ϕs ≫ 1) as a pure ϕs cosine.

The predictions for both the phase and the amplitude
of the photon mode oscillations differ when the gravity

of neutrino perturbations is taken into account. The os-
cillations of the Fourier modes on subhorizon scales are
described by the singular terms in the real space Green’s
functions. For the photon density (112) these are the
δ-function and (χ± 1√

3
)−1 singularities at χ = ± 1√

3
:

d̄γ(χ) = pγ δD

(

|χ|−
1√
3

)

+
2rγ

χ2 − 1
3

+ . . . , (118)

where

rγ = Φ̄+(1/
√

3) (119)

and the dots stand for more regular terms. The Fourier
transform of eq. (118) follows from the first and third
lines of Table II, where n is set to 0 and 1, as

dγ(τ, k) = 2
(

pγ cosϕs − rγπ
√

3 sinϕs

)

+ O(ϕ−1
s ) . (120)

A non-zero phase shift with respect to the cosϕs oscil-
lations is generated whenever rγ ̸= 0. By eq. (119) this
can happen for adiabatic perturbations if only some per-
turbations propagate faster than the sound speed in the
photon fluid, and thus are able to generate metric pertur-
bations beyond the acoustic horizon. This is the case for
the neutrino perturbations, propagating with the speed
of light, Fig. 3 a).

The values of pγ and rγ in eq. (118) are calculated
in O(Rν ) order in Appendix C. With its results (C6)
and (C7), the mode (120) can be presented as

dγ(τ, k) = 3ζin(1 + ∆γ) cos (ϕs + δϕ) + O(ϕ−1
s ) , (121)

where

∆γ ≃ − 0.2683Rν + O(R2
ν) ,

δϕ ≃ 0.1912 πRν + O(R2
ν) .

(122)

As demonstrated in Fig. 4 a), our theoretical predictions
are in excellent agreement with numerical calculations

With SI 
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di↵erent values of Ge↵ . Solid spectra correspond to

P
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where ⇢R and ⇢� are the total energy density in radiation
and in photons, respectively. The e↵ects on the CMB of
increasing Ne↵ have been well-studied in the literature
(see e.g. Ref. [117]) for the case of free-streaming neutri-
nos. For fixed values of the angular scale of the sound
horizon, the epoch of matter-radiation equality, and the
physical baryon abundance, it was found that the most
important net impact of increasing Ne↵ was to damp the
high-` tail of the TT spectrum and to induce a phase
shift towards larger scales (low-`). Interestingly, self-
interacting neutrinos can partially compensate for these

e↵ects, hence pointing to a possible degeneracy between
Ge↵ and Ne↵ . An example of this can be seen in the
dotted red line in the lower left panel of Fig. 1, where
the excess of damping caused by Ne↵ = 4.046 (dotted
black line) is compensated by suppressing neutrino free-
streaming with Ge↵ = 10�2 MeV�2.

Ge↵ a↵ects the EE polarization power spectrum in a
similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ⇤CDM model and that with self-interacting
neutrinos is more visible in this case due to the sharp, well
defined peaks of the polarization spectrum [113]. This
allows to directly see in which direction the spectrum is
shifted compared to ⇤CDM since the oscillations in the
residuals lean in the direction of the phase shift, that is,
there is a sharper drop o↵ in the residuals in the direction
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black line) is compensated by suppressing neutrino free-
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Ge↵ a↵ects the EE polarization power spectrum in a
similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ⇤CDM model and that with self-interacting
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defined peaks of the polarization spectrum [113]. This
allows to directly see in which direction the spectrum is
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m⌫ = 0.06 eV and dashed

spectra correspond to
P

m⌫ = 0.23 eV. Dotted lines in
the bottom panel have Ne↵ = 4.046. Note the localized
increase in amplitude at the scales entering the horizon

at the onset of neutrino free-streaming.

radiation density leads to a higher amplitude feature on
scales entering the horizon at that time.

We thus see that taken together, the joint e↵ect of
Ge↵ ,

P
m⌫ , and Ne↵ can lead to matter power spectra

having a significantly di↵erent structure and shape than
the standard ⇤CDM paradigm.

V. DATA & METHODOLOGY

We use our modified versions of CAMB [108] and
CosmoMC + Multinest [119, 120] to place constraints on
Ge↵ , Ne↵ , and

P
m⌫ , as well as the standard cosmolog-

ical parameters. We use nested sampling [121] to ensure
that we properly sample our posterior, which we expect
to be multi-modal as in previous cosmological studies of
self-interacting neutrinos [54, 64, 65].

We use a combination of CMB and low-redshift data
sets in our analysis:

• TT: low-` and high-` CMB temperature power
spectrum from the Planck 2015 release2 [109].

• EE, TE: low-` and high-` CMB E-mode polariza-
tion and their temperature cross-correlation from
the Planck 2015 data release3 [109]. The 2015 po-
larization data is known to have residual systemat-
ics and results drawn using this dataset should be
interpreted with caution. While our main conclu-
sions will not make use of this dataset, we nonethe-
less present results including this dataset for com-
pleteness.

• lens: CMB lensing data from the Planck 2015 data
release [122].

• BAO: Baryon Acoustic Oscillation (BAO) mea-
surements from the 6dF Galaxy Survey constrain-
ing DV at z = 0.106 [123], Sloan Digital Sky Survey
(SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) data release 11 low-z data measuring
DV at z = 0.32 and CMASS data measuring DV

at z = 0.57 [124], and data from the SDSS Main
Galaxy Sample measuring DV at z = 0.15 [125]

• H0: Local measurement4 of the Hubble parameter
H0 = 73.0 ± 1.75 km s�1Mpc�1 at z = 0.04 from
Ref. [71].

We use the lite high-` likelihood, which marginal-
izes over nuisance parameters, to reduce the number of
free parameters in our analysis. We use the following
data set combinations for our nested sampling analysis:
‘TT+lens+BAO’, ‘TT+lens+BAO+H0’, ‘TT,TE,EE’,
and ‘TT,TE,EE+lens+H0’.

In Table I we list our adopted prior ranges. We place
uniform priors on all these parameters, except for the

2
Explicitly, we use the likelihood plik lite v18 TT for high-` and

commander rc2 v1.1 l2 29 B at low-`.
3

Explicitly, we use the likelihood plik lite v18 TTTEEE for high-`
and lowl SMW 70 dx11d 2014 10 03 v5c Ap at low-`.

4
We note that the mean value of H0 used in our analysis is slightly

lower (⇠ 0.14�) than the value quoted in the published version

of Ref. [71] (ours corresponds to the value found in an earlier

version of their manuscript). We do not expect this very small

di↵erence to impact our results in any way.
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free parameters in our analysis. We use the following
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‘TT+lens+BAO’, ‘TT+lens+BAO+H0’, ‘TT,TE,EE’,
and ‘TT,TE,EE+lens+H0’.
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degrees of freedom, �Ne↵ . However, since the specifics of this heating strongly depend on the
details of the neutrino interaction model, we do not include it here and thus fix Ne↵ = 3.046
for the remainder of this paper. In an upcoming work [79], we show that our results are
robust to this particular choice.

For our Fermi-like phenomenological model, the thermally-averaged neutrino self-interac-
tion cross section scales as h�⌫⌫vi ⇠ G2

⌫T
2
⌫ . Since the neutrino number density itself scales as

n⌫ ⇠ T 3
⌫ after weak neutrino decoupling, we get that the neutrino self-interaction rate goes

as n⌫h�⌫⌫vi ⇠ G2
⌫T

5
⌫ . Any realistic model of neutrino interaction admitting an equivalent

low-energy e↵ective theory as our phenomenological model will lead to a similar interaction
rate, up to a pre-factor depending on the details of the interaction. We thus define our
neutrino self-interaction opacity as ⌧̇⌫ ⌘ �a⇠G2

⌫T
5
⌫ , where a is the scale factor describing the

expansion of the universe, and ⇠ is a constant of order unity that is determined by the details
of the neutrino interaction model [58]. We note that the overhead dot denotes a derivative
with respect to conformal time (which is why there is a scale factor appearing in our defini-
tion of opacity), and that the opacity is by convention negative since it is the derivative of
the neutrino optical depth. Since the neutrino opacity only depends on the product of ⇠ and
G⌫ , we define a rescaled coupling constant

Ge↵ ⌘
p

⇠G⌫ , (2.2)

which allows us to write down the neutrino opacity as

⌧̇⌫ = �aG2
e↵T 5

⌫ . (2.3)

As we show below, the CMB is sensitive only to relatively large values of Ge↵ , and it is thus
reasonable to assume that Ge↵ � GF, where GF ' 1.166 ⇥ 10�11 MeV�2 is the standard
Fermi constant. For the remainder of this work, we thus justifiably ignore the electroweak
contribution to the neutrino opacity, as is traditionally done in standard CMB analyses.

2.2 Cosmological perturbations

We now turn our attention to the evolution of cosmological perturbations in the presence
of self-interacting neutrinos. We adopt the notation of ref. [11] in the synchronous gauge.
The details of the derivation of the neutrino Boltzmann hierarchy in the presence of self-
interaction are presented in ref. [63]. The presence of significant momentum transfer in a
typical neutrino interaction renders the computation of the collision integrals rather tedious.
However, since the neutrino opacity given in eq. (2.3) is a steep function of temperature,
there is only a narrow window in time where the details of the neutrino interactions play
a role. Indeed, at early times when |⌧̇⌫ | � H, the neutrinos form a tightly-coupled fluid
such that only the two lowest moments (corresponding to energy density and heat flux) of
the Boltzmann hierarchy are nonzero2. On the other hand, after neutrino decoupling when
|⌧̇⌫ | ⌧ H, the collision term plays little role in the evolution of neutrino perturbations. Only
near the peak of the neutrino visibility function (see e.g. figure 5 below) can the significant
momentum transferred in a neutrino collision modify the neutrino phase-space distribution
function. Even in this case, since we are only sensitive to the neutrino perturbations through
their gravitational impact on CMB photons, it is unclear whether these distortions of the
neutrino phase-space distribution would be observables. Moreover, the absence of an energy

2Here, H is the conformal Hubble parameter.
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which neutrinos begin free-streaming before the onset of Big Bang nucleosynthesis is not too
surprising. That this mode spans values of the e↵ective neutrino coupling constant that are
more than seven orders of magnitude above the standard Fermi constant is simply a reflection
that the scales probed by the current CMB data are insensitive to the onset of neutrino free-
streaming if it happens early enough. Indeed, for Ge↵ . 10�4.5MeV�2, neutrino decoupling
occurs before the Fourier modes probed by the Planck data enter the causal horizon, implying
that they are una↵ected by the new neutrino interactions and receive the standard phase and
amplitude shift associated with neutrino free-streaming. We illustrate this in figure 5 where
we show the neutrino visibility function g⌫(⌧) ⌘ �⌧̇⌫e

�⌧⌫ as a function of conformal time.7

The gray band shows the approximate time interval in which the multipoles 410 < l < 2500
enter the causal horizon. This multipole range corresponds to scales encompassing all well-
measured CMB temperature peaks except for the first one. We see that the visibility functions
of models with Ge↵ . 10�4.5MeV�2 have no overlap with the time interval at which the modes
probed by the current Planck data are entering the horizon. This explains why the posterior
shown in figure 1 flattens out for this range of neutrino self-interacting strength.

The sharp suppression of the ⇤CDM mode of the posterior distribution for Ge↵ >
10�4.5MeV�2 indicate that these values delay neutrino free-streaming long enough for the
length scales probed by the CMB damping tail to enter the horizon. This is supported by
figure 5 where the red dashed line shows the models corresponding to the 95% upper limit
of the ⇤CDM mode (Ge↵ ⇡ 10�3.5MeV�2), whose visibility function has significant overlap
with the modes probed by the CMB. This indicates that the allowed upper limit on Ge↵

within the ⇤CDM mode strongly depends on the highest multipole probed by the data since
higher lmax are capable of probing an earlier onset of neutrino free streaming and thus smaller
values of Ge↵ . It is thus not surprising that our constraint on the ⇤CDM mode is similar to
that from ref. [58] since the value of lmax between the Planck 2013 and 2015 data release did
not appreciably change.

The deep trough in the posterior distribution for �3.2 . log10

�
Ge↵MeV2

�
. �2.3

indicate that CMB data strongly disfavor neutrino decoupling occurring while the modes
corresponding to the Silk damping tail are entering the horizon. Indeed, models with Ge↵

in this range have a neutrino visibility function peaking within the gray band of figure 5.
The dot-dashed blue line shows the neutrino visibility function for the best fit model within
the interacting neutrino mode. We observe that this visibility function peaks right as the
multipoles corresponding to the first CMB temperature peak (green shaded region) begin to
enter the Hubble horizon. In this case, none of the CMB temperature peaks in the range
410 < l < 2500 receives the phase and amplitude shift usually associated with neutrino
free streaming, hence requiring the other cosmological parameters, notably H0, As, and ns,
to absorb the resulting di↵erence in the temperature spectrum (see figure 7). From the
perspective of CMB polarization, the visibility function of the best fit interacting neutrino
model has a maximum near the epoch when the second peak of the E-mode polarization
spectrum at l ⇡ 370 is entering the horizon.

To understand the impact of this late neutrino decoupling, it is instructive to look at
the CMB temperature and E-mode polarization spectra on the relevant scales (l . 410),
as shown in figure 6. There, we observe that the interacting neutrino mode predicts a
slightly lower amplitude for the first peak of the temperature spectrum compared to the
standard ⇤CDM cosmology, while displaying more power than the standard paradigm at low

7Much like the better-known CMB visibility function, the neutrino visibility function is a probability
density function for the time at which neutrinos last scatter.
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FIG. 5: 1D posteriors for the TT+lens+BAO+H0 data combination after separating the SI⌫ and MI⌫ modes and
plotting them independently. For this reason, the peak locations and posterior shapes are of physical interest rather

than the relative heights of the peaks.
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Concordant direct and inverse distance 
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The SI𝜈 sound horizon:

Aylor et al, (2018)

Distance ladder
The local distance ladder 

sound horizon:

6

Figure 2. Expansion rate measurements together with best-fit mod-
els. BAO data have been converted to H(z) by assumption of
rs = 138.09 Mpc.

crepancies is cosmological, the cosmological solution must
make its important changes at times prior to recombination.

3.1. CDL based constraints

We begin our discussion with our first result from a com-
bination of the H0 constraint (that we refer to as “Cepheids”,
R18), used for calibrating the Pantheon binned distance mod-
uli (“SNe”, Scolnic et al. 2018), which in turn are used to
calibrate the BAO distance and H(z) constraints from BOSS
galaxies (“BAO”, Alam et al. 2017). The CDL based rs re-
sults are shown as blue circles in the top panel of Fig. 3.

3.1.1. CDL + ⇤CDM

First, we have assumed the ⇤CDM model – using it to pro-
vide the parameterized shape of H(z)/H0. We find

rs = (137.6 ± 3.45) Mpc. (9)

As a point of comparison we mention a result from Ad-
dison et al. (2018). They take a more comprehensive set of
BAO data, including constraints at lower redshift from galaxy
surveys (Beutler et al. 2011; Ross et al. 2015), and higher
redshift constraints from BOSS Lyman-↵ (Font-Ribera et al.
2014; Delubac et al. 2015; Bautista et al. 2017) and find, from
the BAO data themselves, assuming the ⇤CDM model, that
H0rs = (10119±138) km/sec. Combining this with the R18
result for H0 it becomes

rs = (137.7 ± 3.7) Mpc (10)

This result is nearly the same, in mean and standard devia-
tion, as our own CDL + ⇤CDM result. The lack of reduction
in uncertainty, despite the much greater amount of BAO data,

is due in part to the lack of use of the SNeIa data, which in-
creases uncertainty in ⌦m, and therefore the shape of DA(z).
The other important factor in the lack of reduction is that the
BOSS galaxy data are unmatched in precision.

Our second CDL + ⇤CDM result comes from replacing
Cepheids (R18) with the SLTD data from H0LiCOW (Birrer
et al. 2018) like explained in §2.2. From our SNeIa + BAO
data we have ↵BAO ⌘ c/(rsH0) = 29.7 ± 0.37. Combining
this with H0 = 72.5+2.1

�2.3 km/s/Mpc from Birrer et al. (2018)
we find

rs = 139.3+4.8
�4.4 Mpc. (11)

3.1.2. CDL + Spline

To explore the model-dependence of the CDL method for
rs inference, we now drop the assumption of ⇤CDM for pa-
rameterization of the shape of H(z)/H0 and replace it with
our Spline model. Because our BAO results span such a small
range of redshift, we can expect that there is very little sen-
sitivity of the inferred rs to the choice of parameterization,
as long as it is not varying rapidly on redshift intervals com-
parable to the redshift span of the BAO measurements. With
the four-parameter model described in the previous section
we indeed find a very similar result to the ⇤CDM result:

rs = (138.1 ± 3.59) Mpc. (12)

That this sound horizon result is a little bit larger is con-
sistent with what we see in the residuals panel of Fig. 1.
Namely, the SNe data largely sit above the ⇤CDM best-fit
curve in the redshift interval with the BAO data. The in-
creased freedom of the empirical model reduces the influ-
ence of the SNe outside of this redshift range, boosting D(z)

in this interval with the result that rs is slightly larger. Note
though that statistically, this is a very small shift of less than
0.2�.

More importantly, because the ⇤CDM and Spline results
for rs are basically the same, including in the uncertainty,
we can conclude that the CDL sound-horizon determina-
tion is highly model independent. In particular, it is, at
most, very weakly dependent on any assumptions about
the shape of the distance-redshift relationship. As a fur-
ther check, we performed an analysis with Spline points
moved to z ={0, 0.2, 0.5, 0.8, 1.1} away from our base-
line z = {0, 0.2, 0.57, 0.8, 1.3} (see §2.1) and obtain rs =

137.7 ± 3.60 Mpc indicating that our results are not highly
insensitive to the choice of pivotal redshift points.

Before closing this subsection we comment on the depen-
dence of the CDL result for rs on curvature. Using R16 for
the H0 constraint, Betoule et al. (2014) for the SNeIa data,
and the same BOSS BAO data, Verde et al. (2017) found,
also for a phenomenological parameterization of H(z), that
rs = 138.5 ± 4.3 Mpc assuming ⌦k = 0. This is consistent
with our result to within 0.2�. When they marginalize over

rs = 138.8± 2.5Mpc
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FIG. 5: 1D posteriors for the TT+lens+BAO+H0 data combination after separating the SI⌫ and MI⌫ modes and
plotting them independently. For this reason, the peak locations and posterior shapes are of physical interest rather

than the relative heights of the peaks.
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SI𝜈 Cosmology and matter clustering 
• The combined effect of Neff, neutrino masses, self-

interaction, As, and ns leave large-scale structure largely 
unchanged on scales where it best measured.

Kreisch, Cyr-Racine + (2019)
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FIG. 10: Relative di↵erence between the SI⌫ mode (upper panels) or MI⌫ mode (lower panels) and ⇤CDM for the
linear matter power spectrum (left) and the CMB lensing power spectrum (right). The SI⌫ and MI⌫ spectra are

produced using the maximum likelihood parameter values for each respective mode. Measurements from the Planck
2015 data release [109] are included in the right panel.

datasets, it is important to entertain the possibility that
a radically di↵erent scenario (i.e. statistically disjoint
in cosmological parameter space) could provide a better
global fit to the data.

Despite the success of the strongly interacting neutrino
cosmology in addressing tensions between certain cosmo-
logical data sets, there are several important obstacles
that still tilt the balance towards the standard ⇤CDM
cosmology. First, the addition of polarization data seems
to degrade the quality of the fit for the strongly interact-
ing neutrino cosmology. We have traced this deterio-
ration of the fit to our use of a Gaussian prior on the
reionization optical depth from Ref. [126]. This prior
was utilized as a way to capture the constraint on the
optical depth from low-` HFI Planck polarization data
before the full likelihood is made available. It it likely
that the Gaussian form of the prior leads to constraints
that are too strong as compared to what the full like-
lihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to deter-
mine whether this is the case. An important fact to keep
in mind is that Ref. [64] found that the addition of CMB
polarization data (without an additional ⌧ prior) tends
to increase the statistical significance of the strongly in-
teracting neutrino cosmology.

Second, the low values of the Bayes factor (see Ta-

ble IV) consistently favor either very weakly interacting
neutrinos or no interaction at all. This reflects the fact
that strongly interacting neutrinos can only fit the data
better for a narrow window of interaction strengths, while
⇤CDM provides a decent (but overall less good) fit over
a broader part of the parameter space. This is a funda-
mental feature of Bayesian statistics and it is unlikely to
change in future analyses. This highlights the need to
consider a portfolio of statistical measures to assess the
quality of a given cosmological model.

Third, it might be di�cult from a particle model-
building perspective to generate neutrino self interactions
with the strength required by the strongly interacting
neutrino cosmology while not running afoul of other con-
straints on neutrino physics. A viable model might look
similar to that presented in Ref. [32], but it remains to
be seen whether the necessary large interaction strength
can be generated while evading current constraints [87]
on new scalar particles coupling to Standard Model neu-
trinos. It is also possible that a successful self-interacting
neutrino model could have a di↵erent temperature depen-
dence than that considered in this work (�⌫ / T 5

⌫ ). This
would change the shape of the neutrino visibility function
(see Refs. [54, 64]) and potentially improve the global fit
to the data. We leave the study of di↵erent temperature
scalings of the neutrino interacting rate to future works.
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datasets, it is important to entertain the possibility that
a radically di↵erent scenario (i.e. statistically disjoint
in cosmological parameter space) could provide a better
global fit to the data.

Despite the success of the strongly interacting neutrino
cosmology in addressing tensions between certain cosmo-
logical data sets, there are several important obstacles
that still tilt the balance towards the standard ⇤CDM
cosmology. First, the addition of polarization data seems
to degrade the quality of the fit for the strongly interact-
ing neutrino cosmology. We have traced this deterio-
ration of the fit to our use of a Gaussian prior on the
reionization optical depth from Ref. [126]. This prior
was utilized as a way to capture the constraint on the
optical depth from low-` HFI Planck polarization data
before the full likelihood is made available. It it likely
that the Gaussian form of the prior leads to constraints
that are too strong as compared to what the full like-
lihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to deter-
mine whether this is the case. An important fact to keep
in mind is that Ref. [64] found that the addition of CMB
polarization data (without an additional ⌧ prior) tends
to increase the statistical significance of the strongly in-
teracting neutrino cosmology.

Second, the low values of the Bayes factor (see Ta-

ble IV) consistently favor either very weakly interacting
neutrinos or no interaction at all. This reflects the fact
that strongly interacting neutrinos can only fit the data
better for a narrow window of interaction strengths, while
⇤CDM provides a decent (but overall less good) fit over
a broader part of the parameter space. This is a funda-
mental feature of Bayesian statistics and it is unlikely to
change in future analyses. This highlights the need to
consider a portfolio of statistical measures to assess the
quality of a given cosmological model.

Third, it might be di�cult from a particle model-
building perspective to generate neutrino self interactions
with the strength required by the strongly interacting
neutrino cosmology while not running afoul of other con-
straints on neutrino physics. A viable model might look
similar to that presented in Ref. [32], but it remains to
be seen whether the necessary large interaction strength
can be generated while evading current constraints [87]
on new scalar particles coupling to Standard Model neu-
trinos. It is also possible that a successful self-interacting
neutrino model could have a di↵erent temperature depen-
dence than that considered in this work (�⌫ / T 5

⌫ ). This
would change the shape of the neutrino visibility function
(see Refs. [54, 64]) and potentially improve the global fit
to the data. We leave the study of di↵erent temperature
scalings of the neutrino interacting rate to future works.
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SI𝜈 Cosmology and cosmological tensions
• Even without using these data in our analysis, the SI𝜈 model 

can naturally accommodate a lower 𝜎8 value and larger H0

Kreisch, Cyr-Racine + (2019)
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FIG. 4: 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions.
We compare the Planck TT + lens + BAO ⇤CDM posterior to the SI⌫ and MI⌫ posteriors for TT + lens + BAO.

We overlay 2� bands for the measurements S8 = 0.427 ± 0.016 [76] and H0 = 73 ± 1.75 km/s/Mpc [71].

TABLE II: TT + lens + BAO + H0 Constraints: Parameter 68% Confidence Limits

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode
⌦bh

2 0.02245+0.00029
�0.00033 0.02282 ± 0.00030

⌦ch
2 0.1348+0.0056

�0.0049 0.1256+0.0035
�0.0039

100✓MC 1.04637 ± 0.00056 1.04062+0.00049
�0.00056

⌧ 0.080 ± 0.031 0.127+0.034
�0.029P

m⌫ [eV] 0.42+0.17
�0.20 0.40+0.17

�0.23

Ne↵ 4.02 ± 0.29 3.79 ± 0.28
log10(Ge↵MeV2) �1.35+0.12

�0.066 �3.90+1.0
�0.93

ln(1010As) 3.035 ± 0.060 3.194+0.068
�0.056

ns 0.9499 ± 0.0098 0.993+0.013
�0.012

H0 [km/s/Mpc] 72.3 ± 1.4 71.2 ± 1.3
⌦m 0.3094 ± 0.0083 0.3010 ± 0.0080
�8 0.786 ± 0.020 0.813+0.023

�0.020

109As 2.08+0.11
�0.13 2.44 ± 0.15

109Ase
�2⌧ 1.771 ± 0.016 1.892+0.019

�0.017

r⇤ [Mpc] 136.3 ± 2.4 139.1 ± 2.3
100✓⇤ 1.04604 ± 0.00056 1.04041+0.00058

�0.00064

DA [Gpc] 13.03 ± 0.23 13.37 ± 0.21
rdrag [Mpc] 138.8 ± 2.5 141.6 ± 2.3

TABLE III: Comparison to ⇤CDM for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

��2
low ` 0.66 �0.75

��2
high ` �1.15 1.08

��2
lens 0.06 �0.24

��2
H0

�6.68 �6.12
��2

BAO �0.81 �0.36

��2
Total �7.91 �6.39

�AIC �1.91 �0.39

Riess et al. (2018)
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Sure, the sound horizon is good, but the 
fit must be terrible, right?

• The model does improve the fit compares to 𝛬CDM, even 
after accounting for the extra parameters.
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FIG. 4: 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions.
We compare the Planck TT + lens + BAO ⇤CDM posterior to the SI⌫ and MI⌫ posteriors for TT + lens + BAO.

We overlay 2� bands for the measurements S8 = 0.427 ± 0.016 [76] and H0 = 73 ± 1.75 km/s/Mpc [71].
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�0.0049 0.1256+0.0035
�0.0039

100✓MC 1.04637 ± 0.00056 1.04062+0.00049
�0.00056

⌧ 0.080 ± 0.031 0.127+0.034
�0.029P

m⌫ [eV] 0.42+0.17
�0.20 0.40+0.17

�0.23

Ne↵ 4.02 ± 0.29 3.79 ± 0.28
log10(Ge↵MeV2) �1.35+0.12

�0.066 �3.90+1.0
�0.93

ln(1010As) 3.035 ± 0.060 3.194+0.068
�0.056

ns 0.9499 ± 0.0098 0.993+0.013
�0.012

H0 [km/s/Mpc] 72.3 ± 1.4 71.2 ± 1.3
⌦m 0.3094 ± 0.0083 0.3010 ± 0.0080
�8 0.786 ± 0.020 0.813+0.023

�0.020

109As 2.08+0.11
�0.13 2.44 ± 0.15

109Ase
�2⌧ 1.771 ± 0.016 1.892+0.019

�0.017

r⇤ [Mpc] 136.3 ± 2.4 139.1 ± 2.3
100✓⇤ 1.04604 ± 0.00056 1.04041+0.00058

�0.00064

DA [Gpc] 13.03 ± 0.23 13.37 ± 0.21
rdrag [Mpc] 138.8 ± 2.5 141.6 ± 2.3

TABLE III: Comparison to ⇤CDM for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

��2
low ` 0.66 �0.75

��2
high ` �1.15 1.08

��2
lens 0.06 �0.24

��2
H0

�6.68 �6.12
��2

BAO �0.81 �0.36

��2
Total �7.91 �6.39

�AIC �1.91 �0.39
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important since the actual Fermi constant governing neu-
trino interaction in the Standard Model takes the value
GF ⇠ O

�
10�11 MeV�2

�
. Taking a uniform prior on Ge↵

would greatly increase the statistical significance of the
interacting mode (see Ref. [54]). We thus consider it con-
servative to adopt a uniform prior on log10

�
Ge↵ MeV2

�
,

but note that the statistical significance of the SI⌫ mode
could be greatly enhanced by a di↵erent choice of prior.

The probability of the prior is equivalent for each mode
(or cosmological model), so Pr (MSI⌫) /Pr (MMI⌫) = 1.
In Table IV we show the Bayes factor for each data set
combination we consider in this work. A Bayes factor
less than unity indicates the data prefer the MI⌫ mode
for the specified parameter space. All values are below
unity, indicating the data, on average, do not prefer the
SI⌫ mode. As expected though, incorporating the local
Hubble rate measurement does increase the significance
of the SI⌫ mode.

A useful method to understand if the SI⌫ mode is
ever preferred and to further investigate the significance’s
dependence on LSS data is to compare the maximum-
likelihood value of each model:

RSI⌫ =
max [L (✓SI⌫ |d)]

max [L (✓MI⌫ |d)]
. (20)

In Table IV we show the maximum-likelihood ratios for
the data set combinations in our analysis. Again, adding
H0 and CMB lensing data increases the likelihood of the
strongly interacting mode. Intriguingly, the SI⌫ mode
has a larger maximum-likelihood (by a factor larger than
2) than the MI⌫ mode for TT+lens+BAO+H0 (see the
unsmoothed posteriors in Fig. 11). It is reasonable that
the Bayes factor for TT+lens+BAO+H0 is below unity
while the maximum-likelihood ratio is above unity since
the former is a global, parameter-averaged statistic while
the latter is based on a single set of best-case scenario
parameters. This indicates that the parameter space for
which strong neutrino interactions are preferred has a
small volume.

It is also informative to look at the individual �2 values
for the di↵erent data sets. To compare the two modes, we
list the ��2 = �2

SI⌫ ��2
MI⌫ values in Table IV. A positive

��2 value thus means that the MI⌫ mode is preferred,
and vice versa. The H0 and high-` TT,TE,EE data show
preference for the SI⌫ mode for TT,TE,EE+lens+H0,
but this is compensated by a poorer fit to low-` and CMB
lensing data. For the TT+lens+BAO data combinations,
the BAO and high-` TT data display a slight preference
for the SI⌫ mode, which is again overshadowed by the
low-` data. We see that the slight preference for the SI⌫
mode with the TT+lens+BAO+H0 data combination is
largely due to improvement of the BAO and high-` like-
lihoods.

B. Comparison to ⇤CDM and its extensions

Comparing how well each mode fits the data rel-
ative to ⇤CDM and its common extensions tells us
if these neutrino self-interaction models o↵er a viable
improvement to current cosmological theory. For the
TT+lens+BAO+H0 data set, we list the ��2 = �2

SI⌫ �
�2

⇤CDM+ext values and the ��2 = �2
MI⌫ ��2

⇤CDM+ext val-
ues for each observable in Table V. Here, ⇤CDM + ext
refers to the Ne↵ +

P
m⌫ two-parameter extension of

the ⇤CDM cosmology. Comparison to plain ⇤CDM was
given in Table III above. For all data sets except the low-
` TT data, both modes o↵er a better fit to the data than
⇤CDM + ext. In fact, the SI⌫ mode has a total ��2 of
�3.33, a significant di↵erence. The improvement of the
high-` CMB data is notable since jointly fitting CMB
and local H0 data usually results in a worse fit to the
CMB damping tail. For the SI⌫ model, this is somewhat
compensated by a degradation of the low-` fit.

What if the strong improvement in fit over ⇤CDM
is due to overfitting from the extra parameter we have
added? To take this into account we compute the Akaike
information criterion (AIC) [130]. The AIC takes into
account how well the model fits the data and penalizes
extra parameters, thereby discouraging overfitting. The
AIC is defined as

AIC = �2 ln (L) + 2k = �2
Total + 2k, (21)

where �2
Total = �2

low ` + �2
high ` + �2

lens + �2
H0

+ �2
BAO, L

is the maximum-likelihood, and k is the number of fit
parameters. Then we can write

�AIC = AICI⌫ � AIC⇤CDM = ��2 + 2�k, (22)

where �k is the di↵erence in the number of parameters
between the two models. The lower AIC between two
models corresponds to the preferred model. Thus, for
us, a negative �AIC value indicates the data prefer the
specified I⌫ model over ⇤CDM, while a positive �AIC
value indicates the data prefer ⇤CDM over the I⌫ model.

We list the �AIC values relative to ⇤CDM + Ne↵ +P
m⌫ in Table V. Here �k = 1, and the SI⌫ mode has a

negative �AIC = �1.33, indicating a genuine statistical
preference for the suppression of neutrino free-streaming
in the early Universe for the TT+lens+BAO+H0 data
set. On the other hand, �AIC = 0.19 for the MI⌫ mode,
indicating that the neutrino self-interactions do not add
value to the fit beyond what is already provided by the
Ne↵ +

P
m⌫ extension. Values of �AIC between the I⌫

models and standard ⇤CDM (�k = 3) are also given in
Table III. The fact that �AIC values for the SI⌫ cosmol-
ogy are similar (�1.91 versus �1.33) when comparing it
to plain ⇤CDM and ⇤CDM +Ne↵ +

P
m⌫ means that

suppressing neutrino free-streaming is the true driving

factor behind the improvement of the fit. Thus, even after
penalizing the self-interacting neutrino models for incor-
porating additional parameters, the TT+lens+BAO+H0

data still significantly prefer the strongly interacting neu-
trino cosmology over ⇤CDM.

Kreisch, Cyr-Racine + (2019)

Correcting for extra parameters



5/1/19Francis-Yan Cyr-Racine - Harvard 39

How important are the neutrino self-
interaction?

• Answer: very much so!

Kreisch, Cyr-Racine + (2019)
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FIG. 9: Illustration of the importance of the neutrino
self-interaction to the fit to CMB data for the SI⌫

cosmology. The red solid spectra corresponds to the
best-fit SI⌫ model, while the red dashed-dot spectra use

the same best-fit cosmological parameters but allows
neutrino free-streaming by setting Ge↵ = 0.

BAO scale, that is, it is on scales where we have a large
amount of data from, for example, spectroscopic galaxy
surveys (see e.g. Ref. [124]). While an analysis that takes
into account the full shape of the measured galaxy power
spectrum at these scales is beyond the scope of this work,
we note that both the SI⌫ and MI⌫ cosmologies only
mildly deviate from the ⇤CDM model near the BAO
scale. On smaller scales, the SI⌫ mode displays a net
suppression of power which has implications for probes
of small-scale structure such as the Lyman-↵ forest [133]
and the satellite galaxy count surrounding the Milky Way
[134]. It is an interesting possibility that the SI⌫ cosmol-
ogy could help alleviate the small-scale structure prob-
lems [135] without introducing a nongravitational cou-
pling between neutrinos and dark matter.

The MI⌫ residuals (lower panel) in Fig. 10a display
an even richer structure than those shown in Fig. 3. In-
deed, even in the case of relatively weak neutrino inter-
actions, their impact on the matter power spectrum is
significant, and potentially provide a di↵erent channel
to constrain new physics in the neutrino sector. Since
the dominant constraining power of the data used here
comes from k ⇠ 0.1 h Mpc�1, we observe that the MI⌫
power spectra have values similar to ⇤CDM near this
scale. Outside the scales probed by �8, the linear matter

power spectra deviate more significantly (up to ⇠ 20%)
from ⇤CDM.

The lensing potential power spectrum in Fig. 10b
shows a similar pattern to the matter power spectrum
for the di↵erent best-fit models, as expected. The cur-
rent large error bars of the Planck lensing measurements
allow substantial freedom to the SI⌫ and MI⌫ cosmolo-
gies. As shown in Table IV, the lensing data prefer the
MI⌫ mode for all data-set combinations, but we note that
the SI⌫ modes are typically within the error bars of the
lensing data.

IX. CONCLUSIONS

The presence of yet-unknown neutrino interactions
taking place in the early Universe could delay the onset of
neutrino free-streaming, imprinting the CMB and probes
of matter clustering with distinct features. We have per-
formed a detailed study of the impact of neutrino self
interactions with a rate scaling as �⌫ ⇠ G2

e↵T 5
⌫ on the

CMB and the matter power spectrum, taking into ac-
count the presence of nonvanishing neutrino masses and
of a nonstandard neutrino thermal history. Using recent
measurements of the BAO scale, the local Hubble rate,
and of the CMB, we find that a cosmological scenario
(originally pointed out in Ref. [54]) in which the onset
of neutrino free-streaming is delayed until close to the
epoch of matter-radiation equality can provide a good
fit to CMB temperature data while also being consistent
with the Hubble constant inferred from the local distance
ladder [71].

This strongly interacting neutrino cosmology has the
following properties:

• Using the data combination TT+lens+BAO+H0,
it displays a strong preference (> 3�) for an ad-
dition neutrino species (Ne↵ = 4.02 ± 0.29, 68%
C.L.). This can have important implications given
the current anomalies in neutrino oscillation exper-
iments. It also prefers a nonvanishing value of the
sum of neutrino masses

P
m⌫ = 0.42+0.17

�0.20 eV (68%
C.L.).

• It can easily accommodate a larger value of H0 and
smaller �8, hence possibly alleviating tensions be-
tween current measurements. Quantitatively, the
data combination TT+lens+BAO+H0 favors H0 =
72.3 ± 1.4 km s�1 Mpc�1 and �8 = 0.786 ± 0.020 at
68% C.L.

It is remarkable that a cosmological model admitting
parameter values that are so di↵erent (see Fig. 5) than
in the standard ⇤CDM paradigm can provide a better
fit to the data at a statistically-significant level (�AIC=
�1.91). We believe that this is the most important lesson
to be drawn from our work: While most analyses have
focused on mild deformation from the standard ⇤CDM
scenario in trying to reconcile the current cosmological
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FIG. 9: Illustration of the importance of the neutrino
self-interaction to the fit to CMB data for the SI⌫

cosmology. The red solid spectra corresponds to the
best-fit SI⌫ model, while the red dashed-dot spectra use

the same best-fit cosmological parameters but allows
neutrino free-streaming by setting Ge↵ = 0.

BAO scale, that is, it is on scales where we have a large
amount of data from, for example, spectroscopic galaxy
surveys (see e.g. Ref. [124]). While an analysis that takes
into account the full shape of the measured galaxy power
spectrum at these scales is beyond the scope of this work,
we note that both the SI⌫ and MI⌫ cosmologies only
mildly deviate from the ⇤CDM model near the BAO
scale. On smaller scales, the SI⌫ mode displays a net
suppression of power which has implications for probes
of small-scale structure such as the Lyman-↵ forest [133]
and the satellite galaxy count surrounding the Milky Way
[134]. It is an interesting possibility that the SI⌫ cosmol-
ogy could help alleviate the small-scale structure prob-
lems [135] without introducing a nongravitational cou-
pling between neutrinos and dark matter.

The MI⌫ residuals (lower panel) in Fig. 10a display
an even richer structure than those shown in Fig. 3. In-
deed, even in the case of relatively weak neutrino inter-
actions, their impact on the matter power spectrum is
significant, and potentially provide a di↵erent channel
to constrain new physics in the neutrino sector. Since
the dominant constraining power of the data used here
comes from k ⇠ 0.1 h Mpc�1, we observe that the MI⌫
power spectra have values similar to ⇤CDM near this
scale. Outside the scales probed by �8, the linear matter

power spectra deviate more significantly (up to ⇠ 20%)
from ⇤CDM.

The lensing potential power spectrum in Fig. 10b
shows a similar pattern to the matter power spectrum
for the di↵erent best-fit models, as expected. The cur-
rent large error bars of the Planck lensing measurements
allow substantial freedom to the SI⌫ and MI⌫ cosmolo-
gies. As shown in Table IV, the lensing data prefer the
MI⌫ mode for all data-set combinations, but we note that
the SI⌫ modes are typically within the error bars of the
lensing data.

IX. CONCLUSIONS

The presence of yet-unknown neutrino interactions
taking place in the early Universe could delay the onset of
neutrino free-streaming, imprinting the CMB and probes
of matter clustering with distinct features. We have per-
formed a detailed study of the impact of neutrino self
interactions with a rate scaling as �⌫ ⇠ G2

e↵T 5
⌫ on the

CMB and the matter power spectrum, taking into ac-
count the presence of nonvanishing neutrino masses and
of a nonstandard neutrino thermal history. Using recent
measurements of the BAO scale, the local Hubble rate,
and of the CMB, we find that a cosmological scenario
(originally pointed out in Ref. [54]) in which the onset
of neutrino free-streaming is delayed until close to the
epoch of matter-radiation equality can provide a good
fit to CMB temperature data while also being consistent
with the Hubble constant inferred from the local distance
ladder [71].

This strongly interacting neutrino cosmology has the
following properties:

• Using the data combination TT+lens+BAO+H0,
it displays a strong preference (> 3�) for an ad-
dition neutrino species (Ne↵ = 4.02 ± 0.29, 68%
C.L.). This can have important implications given
the current anomalies in neutrino oscillation exper-
iments. It also prefers a nonvanishing value of the
sum of neutrino masses

P
m⌫ = 0.42+0.17

�0.20 eV (68%
C.L.).

• It can easily accommodate a larger value of H0 and
smaller �8, hence possibly alleviating tensions be-
tween current measurements. Quantitatively, the
data combination TT+lens+BAO+H0 favors H0 =
72.3 ± 1.4 km s�1 Mpc�1 and �8 = 0.786 ± 0.020 at
68% C.L.

It is remarkable that a cosmological model admitting
parameter values that are so di↵erent (see Fig. 5) than
in the standard ⇤CDM paradigm can provide a better
fit to the data at a statistically-significant level (�AIC=
�1.91). We believe that this is the most important lesson
to be drawn from our work: While most analyses have
focused on mild deformation from the standard ⇤CDM
scenario in trying to reconcile the current cosmological
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the same best-fit cosmological parameters but allows
neutrino free-streaming by setting Ge↵ = 0.

BAO scale, that is, it is on scales where we have a large
amount of data from, for example, spectroscopic galaxy
surveys (see e.g. Ref. [124]). While an analysis that takes
into account the full shape of the measured galaxy power
spectrum at these scales is beyond the scope of this work,
we note that both the SI⌫ and MI⌫ cosmologies only
mildly deviate from the ⇤CDM model near the BAO
scale. On smaller scales, the SI⌫ mode displays a net
suppression of power which has implications for probes
of small-scale structure such as the Lyman-↵ forest [133]
and the satellite galaxy count surrounding the Milky Way
[134]. It is an interesting possibility that the SI⌫ cosmol-
ogy could help alleviate the small-scale structure prob-
lems [135] without introducing a nongravitational cou-
pling between neutrinos and dark matter.

The MI⌫ residuals (lower panel) in Fig. 10a display
an even richer structure than those shown in Fig. 3. In-
deed, even in the case of relatively weak neutrino inter-
actions, their impact on the matter power spectrum is
significant, and potentially provide a di↵erent channel
to constrain new physics in the neutrino sector. Since
the dominant constraining power of the data used here
comes from k ⇠ 0.1 h Mpc�1, we observe that the MI⌫
power spectra have values similar to ⇤CDM near this
scale. Outside the scales probed by �8, the linear matter

power spectra deviate more significantly (up to ⇠ 20%)
from ⇤CDM.

The lensing potential power spectrum in Fig. 10b
shows a similar pattern to the matter power spectrum
for the di↵erent best-fit models, as expected. The cur-
rent large error bars of the Planck lensing measurements
allow substantial freedom to the SI⌫ and MI⌫ cosmolo-
gies. As shown in Table IV, the lensing data prefer the
MI⌫ mode for all data-set combinations, but we note that
the SI⌫ modes are typically within the error bars of the
lensing data.

IX. CONCLUSIONS

The presence of yet-unknown neutrino interactions
taking place in the early Universe could delay the onset of
neutrino free-streaming, imprinting the CMB and probes
of matter clustering with distinct features. We have per-
formed a detailed study of the impact of neutrino self
interactions with a rate scaling as �⌫ ⇠ G2

e↵T 5
⌫ on the

CMB and the matter power spectrum, taking into ac-
count the presence of nonvanishing neutrino masses and
of a nonstandard neutrino thermal history. Using recent
measurements of the BAO scale, the local Hubble rate,
and of the CMB, we find that a cosmological scenario
(originally pointed out in Ref. [54]) in which the onset
of neutrino free-streaming is delayed until close to the
epoch of matter-radiation equality can provide a good
fit to CMB temperature data while also being consistent
with the Hubble constant inferred from the local distance
ladder [71].

This strongly interacting neutrino cosmology has the
following properties:

• Using the data combination TT+lens+BAO+H0,
it displays a strong preference (> 3�) for an ad-
dition neutrino species (Ne↵ = 4.02 ± 0.29, 68%
C.L.). This can have important implications given
the current anomalies in neutrino oscillation exper-
iments. It also prefers a nonvanishing value of the
sum of neutrino masses

P
m⌫ = 0.42+0.17

�0.20 eV (68%
C.L.).

• It can easily accommodate a larger value of H0 and
smaller �8, hence possibly alleviating tensions be-
tween current measurements. Quantitatively, the
data combination TT+lens+BAO+H0 favors H0 =
72.3 ± 1.4 km s�1 Mpc�1 and �8 = 0.786 ± 0.020 at
68% C.L.

It is remarkable that a cosmological model admitting
parameter values that are so di↵erent (see Fig. 5) than
in the standard ⇤CDM paradigm can provide a better
fit to the data at a statistically-significant level (�AIC=
�1.91). We believe that this is the most important lesson
to be drawn from our work: While most analyses have
focused on mild deformation from the standard ⇤CDM
scenario in trying to reconcile the current cosmological
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Why does the SI𝜈 work?

• Neff increases Hubble at early times, hence 
reducing the sound horizon. 

• The tightly-coupled neutrinos do not over 
damp or phase shift the photon-baryon 
fluctuations.  

• Changes in the primordial spectrum of 
fluctuations (ns, As) absorbs the remainder 
of the changes.

• What about matter clustering? 
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FIG. 1: E↵ects of
P

m⌫ , Ge↵ , and Ne↵ on the phase and amplitude of the TT and EE power spectra. Colors denote
di↵erent values of Ge↵ . Solid spectra correspond to

P
m⌫ = 0.06 eV and dashed spectra correspond toP

m⌫ = 0.23 eV. Measurements from the Planck 2015 data release are included [109].

Ne↵ , defined via the relation

⇢R =

"
1 + Ne↵

7

8

✓
4

11

◆4/3
#

⇢� , (13)

where ⇢R and ⇢� are the total energy density in radiation
and in photons, respectively. The e↵ects on the CMB of
increasing Ne↵ have been well-studied in the literature
(see e.g. Ref. [117]) for the case of free-streaming neutri-
nos. For fixed values of the angular scale of the sound
horizon, the epoch of matter-radiation equality, and the
physical baryon abundance, it was found that the most
important net impact of increasing Ne↵ was to damp the
high-` tail of the TT spectrum and to induce a phase
shift towards larger scales (low-`). Interestingly, self-
interacting neutrinos can partially compensate for these

e↵ects, hence pointing to a possible degeneracy between
Ge↵ and Ne↵ . An example of this can be seen in the
dotted red line in the lower left panel of Fig. 1, where
the excess of damping caused by Ne↵ = 4.046 (dotted
black line) is compensated by suppressing neutrino free-
streaming with Ge↵ = 10�2 MeV�2.

Ge↵ a↵ects the EE polarization power spectrum in a
similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ⇤CDM model and that with self-interacting
neutrinos is more visible in this case due to the sharp, well
defined peaks of the polarization spectrum [113]. This
allows to directly see in which direction the spectrum is
shifted compared to ⇤CDM since the oscillations in the
residuals lean in the direction of the phase shift, that is,
there is a sharper drop o↵ in the residuals in the direction
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FIG. 5: 1D posteriors for the TT+lens+BAO+H0 data combination after separating the SI⌫ and MI⌫ modes and
plotting them independently. For this reason, the peak locations and posterior shapes are of physical interest rather

than the relative heights of the peaks.
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SI𝜈 Cosmology and neutrino physics
• The model allows for a whole new neutrinos species and 

favors a non-vanishing neutrino mass at 2-𝜎

Kreisch, Cyr-Racine + (2019)
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Ne↵ = 4.02± 0.29X
m⌫ = 0.42+0.17

�0.20 eV



5/1/19Francis-Yan Cyr-Racine - Harvard 42

• The required strength of the neutrino self-
interaction might be very difficult to model build.

• It is still unclear whether CMB polarization data 
can fully accommodate the SI𝜈 cosmology.  

• The shape of the matter power spectrum might 
become problematic. 

SI𝜈 Cosmology: The dark side

Ge↵ ⇠ 1010GF

2

act only via gravity. In this paper we investigate a class
of models which feature extra, non-standard, neutrino in-
teractions. In these models, neutrinos interact strongly
with a new scalar boson, which is brought into thermal
equilibrium though its coupling to the neutrinos. Rather
than free-streaming, the neutrinos form a tightly coupled
fluid with the new scalar.

These models generically have non-standard values for
N eff

ν , but perhaps more interestingly, the absence of neu-
trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled
fluid, they are fully characterized by density and ve-
locity perturbations, and anisotropic stress is negligible.
In [21, 22] it was shown that the current Wilkinson Mi-
crowave Anisotropy Probe (WMAP) CMB measurements
already have some sensitivity to this effect. This is sig-
nificant because in addition to being able to infer the
presence of relativistic degrees of freedom, we may now
also be able to say something about the interactions of
the particles which make up that relativistic energy den-
sity.

In this paper we address the question: how much rel-
ativistic energy density is there, and what fraction of it
must consist of weakly interacting particles? We answer
this question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other
with bosons, through tree level scalar or pseudo-scalar
couplings of the form

Lνφ = hijνiνjφ + gijνiγ5νjφ, (1)

where the boson φ is taken to be light or massless1. Such
couplings arise in Majoron-like models, viable examples
of which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a
low scale, which occurs late in the history of the universe
[19, 25]. In order to be as model independent as possi-
ble, we assume the new couplings are fixed independently
of the neutrino mass. We also make no distinction be-
tween g or h type couplings, nor between neutrinos and
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson

1 Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].

ν φ

ν φ

ν ν

ν ν

ν

φ

ν

φ

ν

ν

ν

ν

ν
ν

φ

FIG. 1: The interactions that keep the neutrinos and the
scalar coupled. If the scalar is heavier than mν , the process
ν ↔ νφ is replaced by φ ↔ νν.

decay [27] limits are |g| ! 10−2. Neutrinoless double
beta decay sets a limit gee < 10−4 [28], but does not
constrain other elements of the coupling matrix gαβ.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g ∼ 10−5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless φ boson, scalar couplings could medi-
ate long-range forces with possible cosmological conse-
quences [30, 31], while pseudo-scalar couplings mediate
spin-dependent long-range forces, which have no net ef-
fect on an unpolarized medium2. However, if the φ boson
has even a tiny mass H0 ≪ mφ ≪ 1 eV the interaction is
short ranged and insignificant over cosmological distance
scales.

The φ boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ν − φ sys-
tem may stay in thermal contact until late times. The
processes involved, shown in Figure 1, are νφ ↔ νφ,
νν ↔ φφ, νν ↔ νν, and either ν ↔ νφ or νν ↔ φ,
depending on whether the scalar mass, mφ, is smaller or
larger than the neutrino mass, mν

3. For sufficiently large
couplings, the ν–φ system will remain in thermal contact
until the temperature drops below mν or mφ. At this
point the heavier of the two particles will annihilate or
decay.

The possibility of altering the relativistic energy den-
sity through neutrino decay has been considered in [33]4,

2 For pseudo-scalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3 We set all three neutrino species to a common mass mν , with

mν ≫

√

δm2
sol

,
√

δm2
atm . When this approximation does not

hold, the effects of neutrino mass are negligible in present cos-
mological data.

4 See also, Ref. [34], which studies the case of a scalar boson de-
caying into neutrinos, thus distorting the usual thermal neutrino
distribution. Related scenarios, in which hot dark matter is pro-
duced by the decay of heavier particles, are examined in Ref. [35].
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Important Take Home Messages

• As precision increases, cracks might be appearing 
in the standard cosmological model.

• Inspired by status of neutrino physics, we have 
explored a self-interacting neutrino scenario that 
might help reconcile datasets.

• Main message: It is possible to find radically 
different cosmological model that nonetheless can 
provide excellent fit to the data.
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Backup: Compare to standard extension 
• The model does improve the fit compares to 𝛬CDM + Neff + 
m𝜈, even after accounting for the extra parameter.

Kreisch, Cyr-Racine + (2019)
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FIG. 4: 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions.
We compare the Planck TT + lens + BAO ⇤CDM posterior to the SI⌫ and MI⌫ posteriors for TT + lens + BAO.

We overlay 2� bands for the measurements S8 = 0.427 ± 0.016 [76] and H0 = 73 ± 1.75 km/s/Mpc [71].

TABLE II: TT + lens + BAO + H0 Constraints: Parameter 68% Confidence Limits

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode
⌦bh

2 0.02245+0.00029
�0.00033 0.02282 ± 0.00030

⌦ch
2 0.1348+0.0056

�0.0049 0.1256+0.0035
�0.0039

100✓MC 1.04637 ± 0.00056 1.04062+0.00049
�0.00056

⌧ 0.080 ± 0.031 0.127+0.034
�0.029P

m⌫ [eV] 0.42+0.17
�0.20 0.40+0.17

�0.23

Ne↵ 4.02 ± 0.29 3.79 ± 0.28
log10(Ge↵MeV2) �1.35+0.12

�0.066 �3.90+1.0
�0.93

ln(1010As) 3.035 ± 0.060 3.194+0.068
�0.056

ns 0.9499 ± 0.0098 0.993+0.013
�0.012

H0 [km/s/Mpc] 72.3 ± 1.4 71.2 ± 1.3
⌦m 0.3094 ± 0.0083 0.3010 ± 0.0080
�8 0.786 ± 0.020 0.813+0.023

�0.020

109As 2.08+0.11
�0.13 2.44 ± 0.15

109Ase
�2⌧ 1.771 ± 0.016 1.892+0.019

�0.017

r⇤ [Mpc] 136.3 ± 2.4 139.1 ± 2.3
100✓⇤ 1.04604 ± 0.00056 1.04041+0.00058

�0.00064

DA [Gpc] 13.03 ± 0.23 13.37 ± 0.21
rdrag [Mpc] 138.8 ± 2.5 141.6 ± 2.3

TABLE III: Comparison to ⇤CDM for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

��2
low ` 0.66 �0.75

��2
high ` �1.15 1.08

��2
lens 0.06 �0.24

��2
H0

�6.68 �6.12
��2

BAO �0.81 �0.36

��2
Total �7.91 �6.39

�AIC �1.91 �0.39
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TABLE IV: Mode Comparison. Here, BSI⌫ is the Bayes factor between the SI⌫ and the MI⌫ mode, RSI⌫ is theie
maximum likelihood ratio, and ��2 = �2

SI⌫ � �2
MI⌫ . The low-` dataset refers to low-` TEB if polarization was

included and low-` TT if only temperature was used. Similarly, the high-` dataset refers to high-` TT,TE,EE if
polarization was included and high-` TT if only temperature was used.

Parameter TT,TE,EE TT,TE,EE + lens + H0 TT + lens + BAO TT + lens + BAO + H0

BSI⌫ 0.03 ± 0.01 0.10 ± 0.04 0.13 ± 0.04 0.37 ± 0.10
RSI⌫ 0.26 0.63 0.81 2.14

��2
low ` 2.47 2.18 2.00 1.41

��2
high ` 0.22 �0.16 �1.53 �2.23

��2
lens – 1.34 0.16 0.30

��2
H0

– �2.12 – �0.56
��2

BAO – – �0.20 �0.44
��2

Total 2.69 0.92 0.43 �1.52

TABLE V: Comparison of the interacting neutrino cosmology to ⇤CDM + Ne↵ +
P

m⌫ for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

��2
low ` 2.40 0.99

��2
high ` �3.40 �1.17

��2
lens �0.20 �0.50

��2
H0

�1.32 �0.76
��2

BAO �0.81 �0.36

��2
Total �3.33 �1.81

�AIC �1.33 0.19

VIII. DISCUSSION

A. Cosmic microwave background

In Fig. 8, we plot the high-` TT and EE power spec-
tra residuals between the maximum likelihood parame-
ters for each data set combination used and the best-fit
Planck ⇤CDM model. For the SI⌫ mode (upper panels),
the most striking feature of the residuals is the deficit
of power at high multipoles (` > 1500) as compared to
⇤CDM for the TT+lens+BAO and TT+lens+BAO+H0

data combinations. This is caused by the large value of
Ne↵ and the resulting high helium abundance6 YP for
this category of models. This implies that the multi-
parameter degeneracy that allows the SI⌫ cosmology to
provide a decent fit to CMB temperature data at ` <
1500 could be broken by the addition of high-resolution
CMB data (see e.g. Refs. [131, 132]). However, it is rea-
sonable to assume that the BBN helium abundance is
modified in the presence of the new neutrino physics we
explore here, and that the deficit of power at large mul-
tipoles could be compensated by a smaller value of YP

[117]. We leave the study of the impact of a free he-

6
We remind the reader that we use the standard BBN predic-

tions to compute the helium abundance for given Ne↵ and ⌦bh2

values.

lium fraction on interacting neutrino cosmologies to fu-
ture works.

The EE polarization residuals shown in the right panel
of Fig. 8 for the TT+lens+BAO and TT+lens+BAO+H0

data combinations also display strong oscillations for the
SI⌫ mode (upper panel). This implies that the shift in ✓⇤
(and other parameters, see Sec. VI B) that was required
to compensate for the absence of the free-streaming neu-
trino phase shift in the temperature spectrum does not
fully realign the peaks of the polarization spectrum with
the data. This is a consequence of the polarization data
being more sensitive to the phase of the acoustic peaks
[113]. With the current size of the Planck error bars, this
does not constitute an overwhelmingly strong constraint
on the absence of a neutrino-induced phase shift, but it
is possible that future CMB polarization data could en-
tirely rule out this possibility.

The TT+TE+EE CMB-only data combination in the
upper panels of Fig. 8 display an excess of power as com-
pared to ⇤CDM at nearly all scales, resulting in an over-
all poorer fit to the CMB data. At large multipoles,
this is of course in contrast with the deficit of power that
the TT+lens+BAO and TT+lens+BAO+H0 fits display.
Our use of the polarization-driven prior on the reioniza-
tion optical depth from Ref. [126] is largely responsible
for this excess of power as compared to ⇤CDM for the
SI⌫ mode with the TT+TE+EE data set. Again, this
shows that polarization data could in principle break the
multi-parameter degeneracy that allows the SI⌫ cosmol-
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Backup: Mediating Controversy 

Kreisch, Cyr-Racine + (2019)
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FIG. 4: 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions.
We compare the Planck TT + lens + BAO ⇤CDM posterior to the SI⌫ and MI⌫ posteriors for TT + lens + BAO.

We overlay 2� bands for the measurements S8 = 0.427 ± 0.016 [76] and H0 = 73 ± 1.75 km/s/Mpc [71].

TABLE II: TT + lens + BAO + H0 Constraints: Parameter 68% Confidence Limits

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode
⌦bh

2 0.02245+0.00029
�0.00033 0.02282 ± 0.00030

⌦ch
2 0.1348+0.0056

�0.0049 0.1256+0.0035
�0.0039

100✓MC 1.04637 ± 0.00056 1.04062+0.00049
�0.00056

⌧ 0.080 ± 0.031 0.127+0.034
�0.029P

m⌫ [eV] 0.42+0.17
�0.20 0.40+0.17

�0.23

Ne↵ 4.02 ± 0.29 3.79 ± 0.28
log10(Ge↵MeV2) �1.35+0.12

�0.066 �3.90+1.0
�0.93

ln(1010As) 3.035 ± 0.060 3.194+0.068
�0.056

ns 0.9499 ± 0.0098 0.993+0.013
�0.012

H0 [km/s/Mpc] 72.3 ± 1.4 71.2 ± 1.3
⌦m 0.3094 ± 0.0083 0.3010 ± 0.0080
�8 0.786 ± 0.020 0.813+0.023

�0.020

109As 2.08+0.11
�0.13 2.44 ± 0.15

109Ase
�2⌧ 1.771 ± 0.016 1.892+0.019

�0.017

r⇤ [Mpc] 136.3 ± 2.4 139.1 ± 2.3
100✓⇤ 1.04604 ± 0.00056 1.04041+0.00058

�0.00064

DA [Gpc] 13.03 ± 0.23 13.37 ± 0.21
rdrag [Mpc] 138.8 ± 2.5 141.6 ± 2.3

TABLE III: Comparison to ⇤CDM for TT + lens + BAO + H0

Parameter Strongly Interacting Neutrino Mode Moderately Interacting Neutrino Mode

��2
low ` 0.66 �0.75

��2
high ` �1.15 1.08

��2
lens 0.06 �0.24

��2
H0

�6.68 �6.12
��2

BAO �0.81 �0.36

��2
Total �7.91 �6.39

�AIC �1.91 �0.39
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FIG. 7: Correlations between H0 and �8 with neutrino properties.
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the actual low-` polarization data used to obtain it, and
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data set in Fig. 11 in Appendix A.

VII. STATISTICAL SIGNIFICANCE

In this section, we quantify the relative statistical sig-
nificance of the two modes of the posterior, and compare
the maximum likelihood values between our interacting
neutrino models and standard extensions of the ⇤CDM
paradigm.

A. Mode Comparison

To determine the statistical significance of the SI⌫
mode relative to the MI⌫ mode, we can compare their rel-
ative Bayesian evidence. It is defined as the parameter-
averaged likelihood of the data

Z ⌘ Pr (d|M) =

Z

⌦✓

Pr (d|✓, M) Pr (✓|M) d✓, (18)

where d is the data, M is the cosmological model, ✓ are
the parameters in model M, and ⌦✓ is the domain of
the model parameters. We use Multinest’s [129] mode
separation algorithm to compute the Bayesian evidence
for each mode. In practice, this mode separation occurs
near a neutrino coupling value of log10

�
Ge↵ MeV2

�
⇡

�2.2. This separation in parameter space defines ⌦✓ for
each mode.

To compare the SI⌫ to the MI⌫ mode, we compute the
following Bayes factor:

BSI⌫ ⌘ Pr (MSI⌫ |d)

Pr (MMI⌫ |d)
=

ZSI⌫

ZMI⌫

Pr (MSI⌫)

Pr (MMI⌫)
. (19)

We place a uniform prior on log10

�
Ge↵ MeV2

�
rather

than a uniform prior on Ge↵ to avoid introducing a pre-
ferred energy scale. With our choice of prior, small values
of Ge↵ can be thoroughly explored, which is particularly
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
of Ge↵ can be partially canceled by increasing

P
m⌫ , in

a nearly additive fashion. For the EE polarization spec-
trum, suppressing neutrino free-streaming can somewhat
compensate the extra damping caused by a large Ne↵ (at
fixed ✓⇤, zeq, and ⌦bh2; see lower right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neu-
trinos’ impact on the two gravitational potentials �
and  . Indeed, neutrino self-interactions suppress the
anisotropic stress of the universe, leading to � �  = 0
before the onset of neutrino free-streaming. This con-
trasts with the ⇤CDM case for which � = (1 + 2R⌫/5) 
on large scales at early times for the adiabatic mode [107],
where R⌫ is the radiation free-streaming fraction. This
di↵erence in the evolution of the potentials modifies the
gravitational source term driving the the growth of mat-
ter fluctuations. The equation describing the evolution of
dark matter fluctuations can be written in Fourier space
as [112]

d̈c +
ȧ

a
ḋc = �k2 , (14)

where

dc ⌘ �c � 3�, (15)

and where �c = �⇢c/⇢c is the standard dark matter en-
ergy density contrast in Newtonian gauge. Here, an over-
head dot denotes a derivative with respect to conformal
time ⌧ . The gauge-invariant variable dc represents the
fractional dark matter number density perturbation by
unit coordinate volume. At late times, dc is nearly equal
to �c and it is thus a useful quantity to understand the
structure of the matter power spectrum at z = 0. In the
radiation-dominated epoch where ȧ/a = ⌧�1, the solu-
tion to Eq. (14) can be written [118]

dc(k, ⌧) = �9

2
�p + k2

Z ⌧

0

d⌧ 0⌧ 0 (k, ⌧ 0) ln (⌧ 0/⌧), (16)

where �p is the primordial value of � on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the  potential at horizon entry.

We compare the evolution of  in the presence of self-
interacting neutrinos with Ge↵ = 10�2 MeV�2 to that of
standard ⇤CDM in the left panel of Fig. 2. There, we
track the evolution of three di↵erent Fourier modes: k =
10 h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3 h/Mpc which does not enter
the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3 h�1Mpc mode in Fig. 2. Taking together the evolu-
tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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dark matter fluctuations can be written in Fourier space
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integral appearing in Eq. (16) obtains most of its contri-
bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
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each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3 h/Mpc which does not enter
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their ⇤CDM counterparts, as illustrated by the k =
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neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
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the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
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tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
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its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
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Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
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Our analysis could be improved in a few di↵erent ways.
Given the computational resources we had at our disposal
and the need to obtain accurate values of the Bayesian
evidence, we used the “lite” version of the Planck high-`
likelihoods in our analysis. Since some of the assump-
tions that went into generating these likelihoods [136]
might not apply to the interacting neutrino cosmologies,
it would be interesting, given su�cient computing power,
to reanalyze these models with the complete version of
the likelihoods that include all the nuisance parameters.
In particular, it is possible that some of the foreground
nuisance parameters might be degenerate with the e↵ect
of self-interacting neutrinos. For simplicity, we have also
assumed that the helium fraction is determined by the
standard big-bang nucleosynthesis calculation through-
out our analysis. Given the new physics and the result-
ing modified thermal history of the neutrino sector for
the type of models we explore here, it reasonable to as-
sume that the helium fraction would in general be di↵er-
ent than in ⇤CDM. While the details of the helium pro-
duction within any interacting neutrino model are likely
model-dependent, a sensible way to take these e↵ects into
account would be to let the helium fraction float freely
in the fit to CMB data. We leave such analysis to future
works.

Given the structure of the residuals between the
best-fit interacting neutrino cosmologies and the ⇤CDM
model presented in Sec. VIII, it is clear that future high-
` CMB polarization and matter clustering measurements
will play an important role in constraining or ruling out
these models [see e.g. 137]. In particular, the overall red
tilt of the matter power spectrum in the strongly inter-
acting neutrino cosmology could have important conse-
quences on both large and small scales. Since current
anomalies in terrestrial neutrino experiments [2, 3] may
indicate the presence of new physics in the neutrino sec-
tor, it is especially timely to use the complementary na-
ture of cosmological probes to look for possible clues

about physics beyond the Standard Model.
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Appendix A: Results for all data sets

We display in Table VI and Table VII the 68% confi-
dence limits for the strongly interacting and moderately
interacting neutrino modes, respectively. In Fig. 11, we
show the marginalized posteriors for key cosmological pa-
rameters for a choice of smoothing kernel that represents
more accurately the shape of the SI⌫ mode. In Fig. 12,
we compare the marginalized posterior distribution of the
SI⌫ mode for the four data set combinations considered
in this work.

Appendix B: Perturbation equations for interacting massive neutrinos

In this appendix, we derive the Boltzmann equation governing the evolution of the distribution function of massive
self-interacting neutrinos which we denote by f⌫(x,P, ⌧), where P is the canonical conjugate variable to the position
x, and ⌧ is the conformal time. In the scenario considered here, neutrinos can exchange energy and momentum via
2-to-2 scattering of the type ⌫i + ⌫j ! ⌫k + ⌫l. The Boltzmann equation of neutrino species i can be written as

df⌫i

d�
=

3X

j,k,l=1

C⌫i+⌫j!⌫k+⌫l [f⌫i , f⌫jf⌫k , f⌫l ] (B1)

where � is an a�ne parameter that described the trajectory of the observer (see below) and C⌫i+⌫j!⌫k+⌫l is the
collision term for the process ⌫i + ⌫j ! ⌫k + ⌫l. In the conformal Newtonian gauge, the space-time metric takes the
form

ds2 = a2(⌧)[�(1 + 2 )d⌧2 + (1 � 2�)d~x2], (B2)where
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tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3 h�1Mpc mode in Fig. 2. Taking together the evolu-
tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
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P
m⌫ , in
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d̈c +
ȧ

a
ḋc = �k2 , (14)

where

dc ⌘ �c � 3�, (15)
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dc(k, ⌧) = �9

2
�p + k2

Z ⌧

0

d⌧ 0⌧ 0 (k, ⌧ 0) ln (⌧ 0/⌧), (16)

where �p is the primordial value of � on large scales. The
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free-stream, and k = 10�3 h/Mpc which does not enter
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resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3 h�1Mpc mode in Fig. 2. Taking together the evolu-
tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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