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Gravitational Waves (GW)

Astrophysical sources

black hole, neutron start, white dwarf mergers

can be resolvable

study physics of
@ gravity, QCD,
JJ galaxy formation,...




GW Cosmology

Cosmological sources

Phase transition (PT), inflation, pre-heating, cosmic string, ...

"

stochastic

7y Junresolvable, %

inflation, reheating...

’l’}* pf\) study Higgs sectors,
@ Baryogenesis,



GW from first order Phase Transitions

Most discussions focus on
GW energy / frequency spectrum from PT.

PT ~ TeV-100TeV => GW frequencies ~ proposed detectors!

bubble )

@ dynamics :
@ _ _ f[-HZ] | |
1512.06239

studies on stochastic GW, see e.g. Romano & Cornish (2017)
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GW from first order PT

However, the anisotropic pattern of GW provides

valuable info on inflation/reheating

hot spot

cold spot




GW anisotropies in other contexts

Astro sources: Cutler, Holz '09; Cusin et al "17
Inflationary preheating: Bethke et al 13, "14;
Analytic frameworks: Cusin et al 17, Olmec et al "12,
applied to Cosmic string networks: Jenkins et al "18

Non-Gaussianities in pulsar timing arrays: Tsuneto et al ‘19



Gravitational Wave Background (GWB)

Similar to the CMB spectrum, but with
photon -> GW from PT

hot spot =>

Higher energy photons

-> Higher energy GW




Gravitational Wave Background (GWB)

Similar to the CMB spectrum, but with
photon -> GW from PT

where do hot / cold spots come from?




constant temperature

radius: red-shift of surface of

the CMB photon /




constant temperature
radius: red-shift of surface of last scattering

the CMB photon /

"0

CMB

In a homogeneous universe
=> uniform photon redshift from last scattering
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constant temperature

surface of last scattering

redshift perturbation
is of order ~ 10/-5
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constant temperature
surface of last scattering

redshift perturbation
is of order ~ 10/-5

 / “
P TTEE e

CMB

With primordial temperature fluctuations
=> anisotropic redshift for last scattering photons
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critical temperature
surface at ’'T

/
1

With a single reheating process after inflation
=> GW fluctuations ¢orrelated with CMB




(oross (paw (1) pcmB(2)) L uniform critical temperature
~ PGWPCMB surface at T

With only gravitational interactions
=> GW fluctuatigns nearly “pristine”




Dark Ages of Cosmology

High scale inflation, ?
B-modes? ( BBN, LSS, CMB, BAO, ...

—

10"M14 GeV(?) TeV  GeV  MeV eV
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GW can probe uncharted thermal history

High scale inflation

GWSB from PT

v

BBN, LSS, CMB, BAOQ, ...

— =

10714 GeV(?)

103 TeV TeV

GeV MeV eV

Energy scale and physics of cosmological PT? - Frequency spectrum

Multiple sources of primordial density perturbations
and reheating processes during/after inflation? - Anisotropies
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°8 1 2
(Ocross — </0GVY( )?CMB( )> —0
PGW PCMB

If PT physics and CMB have different sources of
primordial fluctuations and reheating history

=> GWB can be ““uncorrelated” with CMB




Can we see the GW anisotropy?



GW from first order PT



First order phase transition

Temperature

v

Tunneling

I(T) = A(T) e 1)
PT rate as a function of temperature
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GW from first order PT

* The dynamics and collisions of the bubbles
generate gravity waves
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(a) t/R. = 0.35

In the sky today:
> 10%Y bubbles

from TeV scale PT

(¢) t/R. = 2.50 (d) t/R. = 7.8

Cutting, Hindmarsh, Weir (20,18)



Energy density of GW from PT

@ Einstein eq. wéw Oogaw ~ GN ppT
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Energy density of GW from PT

@ Einstein eq.

Typical frequency
(micro-phys)

wew 0gaw ~ GN ppT

1 I
CEW I A r).
PT
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Energy density of GW from PT

@ Einstein eq.

Typical frequency

Energy density in GW

wew 0gaw ~ GN ppT

1 I
CEW I A r).
PT

1
PGW ~ = wéw (0gaw)?
N
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Energy density of GW from PT

@ Einstein eq.

Typical frequency

Energy density in GW

2
HPT ™ GN Ptotal

wew 0gaw ~ GN ppT

1 I
CEW I A r).
PT

1
PGW ~ = wéw (0gaw)?
N

2
PGW ~ PPT (HppAtpr)
Ptotal
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Energy density of GW from PT

2
pew ~ “EL (HppAtpr)’
Ptotal
Typical Estimate: HprAtpp ~ 1072
RS1/Composite Higgs

Hawking-Page / conformal -> confinement PT: HprAtpr — 1

Randall, Servant '07; Konstandin, Servant ‘11
(or ordinary PT by tuning)

See 1512.06239 for a review of PT models

HAN\2/ ka \2/100\3 / 0.11¢°
2 _ -5 [ 7% i w
e (f) = 1.67x10 (B> QBM) <g> (0.42+v3,) Seas (/)




GW from PT

P39 ~ 0.1 (Hpp Atpr)® py = 107° — 107 2p,
< CMB N eff bounds

Ttoday
wto‘d,‘a,y ~waew | =SMB ) > mHz - Hz.
PT
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GW detectors

Similar idea, more satellites, more futuristic

BBO, DECIGO, ALIA
plus atomic interferometry: MAGIS
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Energy density of GW from PT

10°
10°
GwW150914
-6 eLISA . .
10 PT (isoty#pic)
Qawh?
10°
LISA
12 Unresolvable ’
10 galactic binaries DECIGO
BBO
107
10° 10 1072 10° 102 10°

Freauencv / Hz

Freqyency (Hz)

rhcole.com/apps/GWplotter/



Seeing the anisotropic pattern



Angular measurement

tod
w(}(,)\]\?ya 6)17 ¢1)

(wz}o\cjl\?ya 927 ¢2)

Method: variation of strains in time for each polarization mode
with different detector location / doppler shift
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A deconvolution problem

tod
G(,)V\?ya 6)17 ¢1)

( E}O\C]l\?ya 927 ¢2)

Ot /)= 1= 3 (D] bl 1)

m

output data| |GW background| |antenna pattern
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Angular measurement

Projected sensitivity for LISA, Kudoh & Taruya (2005)
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Using cross correlation between different phase readout, LISA
may get to max ~ 10, more detectors (BBO / DECIGO) can do
much better [e.g., Cutler & Holz (2009)]
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Astrophysical foreground

10_10: T oo T o T T T T T LR | T T

Unresolvable white dwarf merger "

generates the dominant 0l
background to our signal 0}
B0

However, most of these backgrounds

follow galaxy distribution and can |
be subtracted with enough data !

Adams & Cornish (2013)
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(anisotropic)!

10° 10" 10° 107 10"
fr / Hz

Farmer & Phinney (2003)
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Anisotropic GW: minimal story
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Anisotropic Signal

* Natural to have anisotropic GW signal (like CMB)

paw (0, 0) = paw + dpaw (6, @)

* Two-point correlators of signal fluctuations

GW-GW cew () = SpewDraw(2))s
Pcw
GW-CMB ceross (g = (Paw (Dpons (2))e

PGW PCMB
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In order to see the anisotropy

CGW Z Oﬁm Ykm

v/ Cy > detector sensitivity

Angular resolution

< bt

Imax

CMB

(A) B

1I0 10IO € 1§I90

(A)

(B)

Baumann, TASI lecture




Minimal Story

e Single source of primordial perturbations
(= quantum fluctuations in inflaton field)

 GW anisotropy is totally correlated with primordial
photon perturbation

* Roughly scale-invariant primordial perturbation:

<5,0GW> =
PGW /y ¢ ‘

T Tl T T ol 1 I deddt
38 10 g 100 1000



Detection possibility

Speeay 5 10719 — 1077,

10°
107
GwW150914
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Qawh
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LISA
107 | Jalactic binaries
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Fre%gency (Hz) rhcole.com/apps/GWplotter/
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Qawh?
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Detection possibility

5 today ~ 10—10 L 10—710,7

eLISA

LISA

Unresolvable
galactic binaries

PT (isotyppic)

DECIGO

GW150914

10

1072 10°

there’s a chance to see
the anisotropy in LISA!

Frequency (Hz)
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1072 10°

1may see the anisotropy in

BBOupto 1~100!

Frequency (Hz)




A Non-minimal Story




Non-minimal story

* There could be multiple sources of primordial
fluctuations

« The GW and CMB mayps are not necessarily
correlated
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e.g. a curvaton model

In addition to the inflaton there is an
with guantum fluctuations during inflation

V:A4(1—Sin£) 0pa OV Hins

fa, Pa %4 Ja

0a ~ Hing can generate (possibly larger!)
uncorrelated perturbations
- to the inflaton fluctuations

SV ~ A*(Sa/f,) @
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e.g. a curvaton model

ALP with smaller energy density but larger perturbation
decays into visible sector (VS) particles,
while inflaton decays into a hidden sector (HS)

inflaton

(large 6p/p)

Log p

(),
P/ vs

remain uncorrelated if
HS-VS are mostly decoupled

Log (scale factor)
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Log p

e.g. a curvaton model

VS undergoes a strong first order PT,
producing GW with VS perturbation

inflaton

(large 6p/p)

.yn \
transition R
’ N
] S

!

! GWHIS)

Log (scale factor)
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Log p

e.g. a curvaton model

HS decays into VS, dominates energy density and
suppresses photon perturbation to the observed value

inflaton

(large 6p/p)

LICN

1
VS|

.yn \
transition R
’ N
/] N

\
\
\
1
1
1
1
|
1
1
1
1
|
1
|

1 1

! Gw

(CMB)
VS

Log (scale factor)
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(

before HS decay

I \

o™ G) (F) o ()
P/ cMB PHS P/ aw P /] us

~ 1077°



Correlated GWB & CMB

It density perturbation is dominated by the 1st term
() e () (5)
P/ cMmB PHS P/ aw

the CMB and GW background are completely correlated

1 2
(CToss — <pGVY( ),?CMB( )> # 0
PGW PCMB
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Un-correlated GWB & CMB

It density perturbation is dominated by the 2nd term

) ) )
(3o~ 02) (7)o 1(0) o ~ 107
P/ cMmB PHS P/ aw P/ us

the CMB and GW background are completely uncorrelated

(CToss — <IOGW (1)/0CMB (2)>
PGW PCMB
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e.g. a curvaton model

2
)
dpaw ~ 0.1 ('OVS> (HpTAtpT)2 (f) p~ < CMB bound
GW

H .
PHS on 1socurvature

inflaton HPT AtPT — O . 1

__________ 0
( ALP | ( p) — 10 4 pLS — 01
large 6p/p QW } pHS

Log p

larger energy contrast

Log (scale factor)

anisotropy is visible at BBO up to £pax ~ 100
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Conclusion and Outlook

First Order PT
Re-examine RS1
\_} Gravitational Inflaton /Curvaton
Waves Perturbations
Anisotropic

GW Background \
Future detectors (\J
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Non-Gaussianity?



