Anisotropies in the Gravitational Wave Background from Cosmological Phase Transitions Raman Sundrum (borrowing from Yuhsin Tsai) University of Maryland PRL 121, 201303 (2018), arXiv:1803.10780 Michael Geller, Anson Hook, Raman Sundrum, Yuhsin Tsai







### Gravitational Waves (GW)

#### Astrophysical sources

#### black hole, neutron start, white dwarf mergers



#### can be resolvable





## GW Cosmology

#### Cosmological sources

Phase transition (PT), inflation, pre-heating, cosmic string,...



#### GW from first order Phase Transitions

Most discussions focus on GW energy/frequency spectrum from PT.

PT ~ TeV-100TeV => GW frequencies ~ proposed detectors!



#### GW from first order PT

## However, the **anisotropic pattern** of GW provides valuable info on inflation/reheating



#### GW anisotropies in other contexts

Astro sources: Cutler, Holz '09; Cusin et al '17 Inflationary preheating: Bethke et al '13, '14; Analytic frameworks: Cusin et al '17, Olmec et al '12, applied to Cosmic string networks: Jenkins et al '18 Non-Gaussianities in pulsar timing arrays: Tsuneto et al '19

## Gravitational Wave Background (GWB)

# Similar to the CMB spectrum, but with photon -> GW from PT

hot spot =>

Higher energy photons

-> Higher energy GW



## Gravitational Wave Background (GWB)

# Similar to the CMB spectrum, but with photon -> GW from PT





where do hot / cold spots come from?











With a single reheating process after inflation => GW fluctuations correlated with CMB



With only gravitational interactions => GW fluctuations nearly "pristine"

#### Dark Ages of Cosmology



#### GW can probe uncharted thermal history



Energy scale and physics of cosmological PT? - Frequency spectrum

Multiple sources of primordial density perturbations and reheating processes during/after inflation? - Anisotropies



If PT physics and CMB have different sources of primordial fluctuations and reheating history => GWB can be ``uncorrelated" with CMB

### Can we see the GW anisotropy?

## GW from first order PT

#### First order phase transition



$$\Gamma(T) = A(T) e^{-S(T)}$$

PT rate as a function of temperature

### GW from first order PT

 The dynamics and collisions of the bubbles generate gravity waves



In the sky today:  $> 10^{30}$  bubbles from TeV scale PT

(c)  $t/R_* = 2.50$ 



Cutting, Hindmarsh, Weir (2018)

## ) Einstein eq. $\omega_{ m GW}^2 \, \delta g_{ m GW} \sim G_N \, \rho_{PT}$







 $H_{PT}^2 \sim G_N \, \rho_{total}$ 

$$\rho_{\rm GW} \sim \frac{\rho_{PT}^2}{\rho_{total}} \left( H_{PT} \Delta t_{PT} \right)^2$$

$$\left| \rho_{\rm GW} \sim \frac{\rho_{PT}^2}{\rho_{total}} \left( H_{PT} \Delta t_{PT} \right)^2 \right|$$

Typical Estimate: $H_{PT}\Delta t_{PT} \sim 10^{-2}$ RS1/Composite HiggsHawking-Page/conformal -> confinement PT: $H_{PT}\Delta t_{PT} \rightarrow 1$ Randall, Servant '07; Konstandin, Servant '11(or ordinary PT by tuning)See 1512.06239 for a review of PT models

$$h^{2}\Omega_{\rm env}(f) = 1.67 \times 10^{-5} \left(\frac{H_{*}}{\beta}\right)^{2} \left(\frac{\kappa\alpha}{2\mathbf{b}+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \left(\frac{0.11 \, v_{w}^{3}}{0.42 + v_{w}^{2}}\right) \, S_{\rm env}(f)$$

#### GW from PT

$$\left| \rho_{\rm GW} \sim \frac{\rho_{PT}^2}{\rho_{total}} \left( H_{PT} \Delta t_{PT} \right)^2 \right|$$

$$\rho_{\rm GW}^{today} \approx 0.1 \left( H_{PT} \Delta t_{PT} \right)^2 \rho_{\gamma} \approx 10^{-5} - 10^{-2} \rho_{\gamma}$$
< CMB N\_eff bounds

$$\omega_{\rm GW}^{today} \sim \omega_{\rm GW} \left( \frac{T_{\rm CMB}^{today}}{T_{PT}} \right) \gtrsim \, {\rm mHz} - {\rm Hz}_{\rm CM}$$

#### GW detectors



Similar idea, more satellites, more futuristic BBO, DECIGO, ALIA plus atomic interferometry: MAGIS



## Seeing the anisotropic pattern



**Method:** variation of strains in time for each polarization mode with different detector location / doppler shift



#### Angular measurement

Projected sensitivity for LISA, Kudoh & Taruya (2005)



Using cross correlation between different phase readout, **LISA** may get to  $\ell_{\rm max} \sim 10$ , more detectors (**BBO** / **DECIGO**) can do much better [e.g., Cutler & Holz (2009)]

## Astrophysical foreground

**Unresolvable white dwarf merger** generates the dominant background to our signal

However, most of these backgrounds **follow galaxy distribution** and can be subtracted with enough data

Adams & Cornish (2013)



Farmer & Phinney (2003)

## Anisotropic GW: minimal story



## Anisotropic Signal

• Natural to have anisotropic GW signal (like CMB)

$$\rho_{\rm GW}(\theta,\phi) = \bar{\rho}_{\rm GW} + \delta \rho_{\rm GW}(\theta,\phi)$$

• Two-point correlators of signal fluctuations

**GW-GW** 
$$C^{\rm GW}(\theta) \equiv \frac{\langle \rho_{\rm GW}(1) \rho_{\rm GW}(2) \rangle_{\theta}}{\bar{\rho}_{\rm GW}^2}$$

**GW-CMB** 
$$C^{\text{cross}}(\theta) \equiv \frac{\langle \rho_{\text{GW}}(1)\rho_{\text{CMB}}(2) \rangle_{\theta}}{\bar{\rho}_{\text{GW}}\,\bar{\rho}_{\text{CMB}}}$$

#### In order to see the anisotropy

$$C^{\rm GW}(\hat{n}) = \sum_{\ell m} C_{\ell m} Y_{\ell m}(\hat{n})$$





## Minimal Story

- Single source of primordial perturbations (= quantum fluctuations in inflaton field)
- GW anisotropy is totally correlated with primordial photon perturbation
- Roughly scale-invariant primordial perturbation:



#### Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$



#### Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$



#### Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$



## A Non-minimal Story



## Non-minimal story

- There could be multiple sources of primordial fluctuations
- The GW and CMB maps are not necessarily correlated

In addition to the inflaton there is an Axion-Like Particle with quantum fluctuations during inflation

$$V = \Lambda^4 (1 - \sin \frac{a}{f_a})$$



$$\frac{\delta\rho_a}{\rho_a} \sim \frac{\delta V}{V} \sim \frac{H_{\rm inf}}{f_a}$$

can generate (possibly larger!) uncorrelated perturbations to the inflaton fluctuations

ALP with smaller energy density but larger perturbation decays into visible sector (VS) particles, while inflaton decays into a hidden sector (HS)



$$\left(\frac{\delta\rho}{\rho}\right)_{\rm HS} \le 10^{-5}$$
$$\left(\frac{\delta\rho}{\rho}\right)_{\rm VS} \ge 10^{-5}$$

remain uncorrelated if HS-VS are mostly decoupled

**VS** undergoes a strong first order PT, producing GW with VS perturbation



$$\left(\frac{\delta\rho}{\rho}\right)_{\rm HS} \le 10^{-5}$$

$$\left(\frac{\delta\rho}{\rho}\right)_{\rm GW} \sim \left(\frac{\delta\rho}{\rho}\right)_{\rm VS} \ge 10^{-5}$$

**HS** decays into **VS**, dominates energy density and suppresses photon perturbation to the observed value



#### Correlated GWB & CMB

If density perturbation is dominated by the 1st term

$$\left(\frac{\delta\rho}{\rho}\right)_{\rm CMB} \sim \left(\frac{\rho_{\rm VS}}{\rho_{\rm HS}}\right) \left(\frac{\delta\rho}{\rho}\right)_{\rm GW} + \left(\frac{\delta\rho}{\rho}\right)_{\rm HS} \sim 10^{-5}$$



the CMB and GW background are completely correlated

$$C^{cross} \equiv \frac{\langle \rho_{\rm GW}(1)\rho_{\rm CMB}(2)\rangle}{\bar{\rho}_{\rm GW}\bar{\rho}_{\rm CMB}} \neq 0$$

#### Un-correlated GWB & CMB

If density perturbation is dominated by the 2nd term

$$\left(\frac{\delta\rho}{\rho}\right)_{\rm CMB} \sim \left(\frac{\rho_{\rm VS}}{\rho_{\rm HS}}\right) \left(\frac{\delta\rho}{\rho}\right)_{\rm GW} + \left(\frac{\delta\rho}{\rho}\right)_{\rm HS} \sim 10^{-5}$$

the CMB and GW background are completely uncorrelated

$$C^{cross} \equiv \frac{\langle \rho_{\rm GW}(1)\rho_{\rm CMB}(2)\rangle}{\bar{\rho}_{\rm GW}\bar{\rho}_{\rm CMB}} = 0$$

$$\delta \rho_{\rm GW} \sim 0.1 \left(\frac{\rho_{\rm VS}}{\rho_{\rm HS}}\right)^2 (H_{PT} \Delta t_{PT})^2 \left(\frac{\delta \rho}{\rho}\right)_{\rm GW} \begin{array}{l} \rho_{\gamma} < \text{CMB bound} \\ \text{on isocurvature} \end{array}$$



anisotropy is visible at BBO up to  $\ell_{\rm max} \approx 100$ 

## Conclusion and Outlook

