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The Era of Precision Cosmology

20 years ago
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of Precision Cosmology

10 years ago
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The Era of Precision Cosmology
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The Era of Precision Cosmology

Very good agreement between all CMB data!
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And also with non-CMB data!

The Era of Precision Cosmology
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The Era of Precision Cosmology

Astonishing success of ACDM Cosmology

Parameter

Planck alone

Planck + BAO

0.02237 £ 0.00015

0.1200 £ 0.0012
1.04092 + 0.00031
0.0544 + 0.0073
3.044 £0.014
0.9649 + 0.0042

0.02242 + 0.00014

0.11933 + 0.00091
1.04101 + 0.00029
0.0561 + 0.0071
3.047 £0.014
0.9665 + 0.0038

67.36 + 0.54

67.66 + 0.42

Planck alone

0.6% precision
1% precision
0.3% precision
13% precision
5% precision
0.5% precision
0.7% precision

.2015 data: TT +lowP reduced ¥2 = 1.004
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The Era of Precision Cosmology

Astonishing success of ACDM Cosmology

Parameter Planck alone

Planck + BAO

0.02237 £ 0.00015

0.1200 £ 0.0012
1.04092 + 0.00031
0.0544 + 0.0073
3.044 £0.014
0.9649 + 0.0042

0.02242 + 0.00014

0.11933 + 0.00091
1.04101 + 0.00029
0.0561 + 0.0071
3.047 £0.014
0.9665 + 0.0038

67.36 + 0.54

67.66 + 0.42

Planck alone

0.6% precision
1% precision
0.3% precision
13% precision
5% precision
0.5% precision
0.7% precision

e.g. 2015 data: TT +lowP reduced 2 = 1.004

As precision of data has increased, a certain number of “tensions” have emerged

o S8 = 05(Q/0.3)%5is higher at ~2-30 than that measured by low-z probes (SZ cluster
count, Weak Lensing surveys CFHTLenS, KiDS, DES...)

o Amplitude of lensing potential CI¢¢ is higher than deduced from peak smoothing
in TT/TE/EE at ~20.

Potentially very interesting but still very premature...
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The Hubble Tension
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3.80 discrepancy between latest “direct” measurement from SHOES and the value
inferred from a fit of ACDM to Planck 2018

HO(SHOES) = 73.52 + 1.62 km/s/Mpc  HO(ACDM) = 67.27 * 0.60 km/s/Mpc
Riess++ 1804.10655 Aghanim++ 1807.06209
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Outline

o |Is the Hubble Tension Real?
o Isita “"Hubble Tension” or “Sound Horizon" tension?
o Early Dark Energy Can Resolve The Hubble Tension

o Towards a new concordance model beyond ACDM?
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Outline

Is the Hubble Tension Real?

Is it a "Hubble Tension” or “Sound Horizon"” tension?
 Early Dark Energy Can Resolve The Hubble Tension

 Towards a new concordance model beyond ACDM?
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Outline

Is the Hubble Tension Real?

Is it a "Hubble Tension” or “Sound Horizon"” tension?
 Early Dark Energy Can Resolve The Hubble Tension

 Towards a new concordance model beyond ACDM?
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The Distance Ladder

galaxy clusters
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The Distance Ladder
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The Distance Ladder

galaxy clusters
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GAIA will measure few*100's of cepheids at distant
uas precision by 2022 (currently ~ 50) standards
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Could 1t be systematiecs in SN data?

o Sources of error are numerous (non-exhaustive list):
i) measurement of parallaxes.
ii) measurement of (apparent) magnitudes.
iii) calibration issues: are SN1 really standard candles?
iv) effect of local environment: could “local, young” cepheids be different from

the “old, Hubble flow" cepheids?
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Could 1t be systematiecs in SN data?

o Sources of error are numerous (non-exhaustive list):
i) measurement of parallaxes.
ii) measurement of (apparent) magnitudes.
iii) calibration issues: are SN1 really standard candles?
iv) effect of local environment: could “local, young” cepheids be different from

the “old, Hubble flow" cepheids?

o High value of HO is supported by numerous studies, including non-SHOES ones.
Cardina++ 1611.06088, Zhang++1706.07573, Feeney++ 1707.00007, Follin&Knox 1707.01175

o Environmental effects exist but cannot explain more than ~1% of the difference.
Macpherson++ 1807.01714, Jones++ 1805.05911

o 5 different calibration methods all giving consistently high values of HO.
see discussion in Riess++1810.03526
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Could 1t be systematiecs in SN data?

o Sources of error are numerous (non-exhaustive list):
i) measurement of parallaxes.
ii) measurement of (apparent) magnitudes.
iii) calibration issues: are SN1 really standard candles?
iv) effect of local environment: could “local, young” cepheids be different from
the “old, Hubble flow" cepheids?

' High value of HO is supported by numerous studies, including non-SHOES ones.
Cardina++ 1611.06088, Zhang++1706.07573, Feeney++ 1707.00007, Follin&Knox 1707.01175

Environmental effects exist but cannot explain more than ~1% of the difference.
Macpherson++ 1807.01714, Jones++ 1805.05911

o 5 different calibration methods all giving consistently high values of HO.
see discussion in Riess++1810.03526

Exists even with non-SN data: Gravitational time delay of strongly lensed quasars
is in (mild) tension with Planck. HO = 72.5 + 2.1 km s~1 Mpc-?

Bonvin++ 1607.01790, S. Birrer++, 1809.01274
In the (near) future: Gravitational wave standard sirens (~5 yrs) expect to get to

1km/s/Mpc. Mortlock++ 1811.11723
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Could 1t be systematics in Planck data?

o ltis driven by residuals oscillations at | > 800 and the low-l ~30 deficit.

1608.02487
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Addison++ 1511.00055, Planck Col. 1608.02487
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Could 1t be systematics in Planck data?

o ltis driven by residuals oscillations at | > 800 and the low-| ~30 deficit.
Addison++ 1511.00055, Planck Col. 1608.02487

1608.02487
H() Wm

_L<2500 1| <2500
' £ <800 _ _ £ <800 '
I ‘ 1 - — I ‘ 1
 £<25004 1|  0<25004;

¢ < 2500 fixlens 1 | - £<2500fixlens’ |
30 < £ < 2500 1 | 30<£<2500 |

30 < £.< 800 | 1 Lo 30<£<800

68 0.135 0.138 0.141 0.144

I'T + t prior, 10 error

o It exists with other CMB data: WMAP+SPT/ACT+BAO ~ 2.4-3.10 with SHOES.

o It exists even with non-CMB data! BAO+BBN ~ 30 with SHOES. _
Addison++ 1707.06547
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HO from the CMB 1s model dependent

Planck TT,TE ,EE+lowE B Planck TT,TE,EE+lowE+lensing B Planck TT,TE ,EE+lowE+lensing+BAO
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HO from the CMB 1s model dependent

Planck TT,TE,EE+lowE B Planck TT,TE,EE+lowE+lensing B Planck TT,TE ,EE+lowE+lensing+BAO
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Q. h?

Planck measurement is strongly model dependent! baseline assumes “flat” universe
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Early/late universe physics are degenerate

o standard ruler in the sky: distance travelled by sound wave until recombination.

o problem: only angular scale of sound horizon is accessible 85 = rs/Da

illustration: T. Smith
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Farly/late universe physics are degenerate

o standard ruler in the sky: distance travelled by sound wave until recombination.
o problem: only angular scale of sound horizon is accessible 85 = rs/Da

D)

illustration: T. Smith

o rs pre-recombination physics: DOES NOT depend on Hy, but on physical densities wy

o daangular diameter distance: post-recombination physics. da > @, 9-35H0-2
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How does CMB data measure HO?

o It comes from the measurement of three angular scales: £, €4, £eq<=> 05,04,0eq

Os sound horizon at last scattering ~1.0404

from peak spacing

0 500 1000 1500 2000
plots by L. Knox multipole moment ¢

(nb: any B = r,/Da) e.g. Hu&White astro-ph/9609079, Hu-++astro-ph/0006436
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How does CMB data measure HO?

o It comes from the measurement of three angular scales: £, €4, £eq<=> 05,04,0eq

64 photon diffusion length at last scattering ~ 0.1609

no photon diffusion |

“Silk Damping”

500 1000 1500 2000
plots by L. Knox multipole moment ¢

(nb: any B = r,/Da) e.g. Hu&White astro-ph/9609079, Hu-++astro-ph/0006436
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How does CMB data measure HO?

o It comes from the measurement of three angular scales: £, €4, £eq<=> 05,04,0eq

Oeq horizon size at matter-radiation equality ~ 0.81

/\V/\v/\v/\v

potential envelope :

gravitational “boost’

| of oscillations |
0 500 1000 1500 2000

plots by L. Knox multipole moment ¢

102

(nb: any B = r,/Da) e.g. Hu&White astro-ph/9609079, Hu-++astro-ph/0006436
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A moditied Dark-Energy sector?

o hincreases but da(z+)must be kept constant: decrease Qpeat z < z+
Ve dZ

r
Ox = d_X dy(z+) = J
A 0 100\/ op(1 + 2)3 + Qpp(2)h?
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A moditied Dark-Energy sector?

o hincreases but da(z+)must be kept constant: decrease Qpeat z < z+
Ve dZ

dy(z+) = J'
0 100\/ ong(1 + 2)3 + Qpp(2)h?

ALL16, AInE =0

—

— ALL12, Zhao et al. (201
-l ALL16

. DE$I++_ ‘ .
0 1
Zhao++1701.08165 redshift z

-2.0

o Requires phantom crossing (stability of perturbations?)
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A moditied Dark-Energy sector?

o h increases but da(z+)must be kept constant: decrease Qpeat z < z-

T dZ

dy(z+) = [
0 100\/ ong(1 + 2)3 + Qpp(2)h?

p—
(\®)

ALL16, AInE =0

[E—

H/H(LCDM)

o
o0

—

— ALL12, Zhao et al. (201
-l ALL16 -2 |
mm DESI++ | — JLA
0 1 —

-2.0

. 0
Zhao++1701.08165 redshift z VP+-+1803.02474 redshift z

o Requires phantom crossing (stability of perturbations?)

o JLA favors “flat” expansion history / BAO favors oscillation: 20 residual tension
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The HO tension 1s a rs tension

One can deduce the co-moving sound horizon rs from HO and BAO
rsfrom CMB needs to decrease by ~ 10 Mpc

HOLICOW+SNe+BAO (ACDM)
Cepheids+SNe+BAO (ACDM)
Cepheids+SNe+BAO (Spline, Q=0)

o] Planck
o TT+lowE

o] TE+lowE

EE+IlowE

TT (£ <800)

TT (Z>800)
WMAP9+SPT+ACT
SPT-SZ++
SPTpol+7
ACTpol+rz
BAO+BBN

Model: ACDM

2.6
2.6
2.7
2.3
2.8
2.1
3.0
3.0
3.0
2.7
2.8
2.6

Planck
Planck+3G(TT,TE,EE+Iensing)

Model: ACDM + Ness

Planck
Planck+3G(TT,TE,EE+Iensing)

N
W

Model: ACDM + N.s + Y,

Planck
Planck+3G(TT,TE,EE+Ilensing)

N
~

Model: ACDM + Qy

135 140 145
rs [Mpc] Aylor++1811.00537
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How to solve the Hubble tension

o rs does not reach 10Mpc before ~ 25000 in ACDM
O s receives most of its contribution close to recombination

ACDM prediction

10° 10°
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How to solve the Hubble tension

o rs does not reach 10Mpc before ~ 25000 in ACDM
O s receives most of its contribution close to recombination

ACDM prediction

10° 10°
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How to solve the Hubble tension

o rs does not reach 10Mpc before ~ 25000 in ACDM
O s receives most of its contribution close to recombination

I[insert new physics here]

|€— —>

ACDM prediction

10° 10°
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How to Resolve the Hubble tension
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How to Resolve the Hubble tension

decreage c: OM-photon scattering? DM-b geattering?
/ Boddy, Gluscevic, VP++1808.00001

<x CS(Z)
d
“H)

oo
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How to Resolve the Hubble tension

decreage c: OM-photon scattering? DM-b geattering?

decreage z+= modified recombination phygice?

Chiang&Slozar 1811.03624 \\ / Boddy, Gluscevic, VP++1808.00001

r, = r*d Q)

“HG)

oo
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How to Resolve the Hubble tension

decreage 2= modified recombination phycice? decreage co: UM-photon gcattering? DM-b gcattering?

Chiang&Slozar 1811.03624 \\ / Boddy, Gluscevic, VP++1808.00001

s = r* dz )
H(z)

oo

increage H(z): Neff? Early Dark Energy?
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How to Resolve the Hubble tension

decreage 2= modified recombination phycice? decreage c: OM-photon scattering? DM-b geattering?

Chiang& Slozar 1811.03624 \ / Boddy, Gluscevic, VP++1808.00001

s = r* dz )
o H@)

increage H(z): Neff? Early Dark Energy?
o Neff ~ 3.5 is needed

= | ate Universe

= Planck ACDM

= Planck ACDM+N 4
= WMAP ACDM

1220 65 70 75
H, (Mpc 'km/s)

Bernal++ 1607.05617
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How to Resolve the Hubble tension

decreage 2= modified recombination phycice? decreage c: OM-photon scattering? DM-b geattering?

Chiang& Slozar 1811.03624 \ / Boddy, Gluscevic, VP++1808.00001

s = r* dz )
o H@)

increage H(z): Neff? Early Dark Energy?
o Neff ~ 3.5 is needed: disfavored by Planck high-l polarization and BAO

160

= | ate Universe

= Planck ACDM

H = Planck ACDM+N
= WMAP ACDM

I I
12%0 65 70 75

H, (Mpc 'km/s)

Bernal++ 1607.05617
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How to Resolve the Hubble tension

decreage 2= modified recombination phycice? decreage c: OM-photon scattering? DM-b geattering?

Chiang& Slozar 1811.03624 \ / Boddy, Gluscevic, VP++1808.00001

s = r* dz )
o H@)

increage H(z): Neff? Early Dark Energy?
o Neff ~ 3.5 is needed: disfavored by Planck high-l polarization and BAO

160

155 . ! )
. 13 Riess et al. (2018)

= | ate Universe

= Planck ACDM

H = Planck ACDM+N
= WMAP ACDM

I I
12%0 65 70 75

H, (Mpc 'km/s) 2.0 2.5 3.5)\/ 3.5
eff
Aghanim++ 1807.06209
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Scalar field and Early Dark Energy

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

b+ 3HG + A0 0y — %&2 £VilD): Bs— %Q52 — V()

dg
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Scalar field and Early Dark Energy

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

< : 1. e
b+ 3Hb + d‘f;qiqb) =0 Py = 5(/52 + Vio(9), Py = §¢2 — Vo (9)

o We use the GDM formalism with:

—— Radiation
| —— Matter

{QEDE(Z > ZC) = QEDE(ZC) —— Cosmological constant

—— Total density
Q ez —Qb (1 f %)

| —— Early dark energy

n=1: matter, n=2: radiation, etc.
GDM: Hu astro-ph/9801234

&
O
Q.
=
2
m
~
G
=
<

104 10° 10° 10’

plot by T. Karwal
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Scalar field and Early Dark Energy

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

< : 1. e
b+ 3Hb + dvz;qiqb) =0 Py = 5(/52 + Vio(9), Py = §¢2 — Vo (9)

o We use the GDM formalism with:

—— Radiation
| —— Matter

{QEDE(Z > Zc) = QEDE(ZC) —— Cosmological constant

—— Total density
Q ez —Qb (1 f %)

| —— Early dark energy

n=1: matter, n=2: radiation, etc.
GDM: Hu astro-ph/9801234

=
o
&

(Tl'_l
U
Q
=
X
w10
~
O
=
<

o Realized in (at least) two models:

One with oscillating potential
("axion-like”) and a simple linear
potential

2
V(¢) a ¢ n ' LR | LA | LA | LI | T """'l4 T """'15 T """'l6 LI 7
10 10 10 10

VP++1806.10608; Karwal, VP++(in prep)
plot by T. Karwal
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Scalar field and Early Dark Energy

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

< : 1. e
b+ 3Hb + dvz;qiqb) =0 Py = 5(/52 + Vio(9), Py = §¢2 — Vo (9)

o We use the GDM formalism with:

—— Radiation
| —— Matter

{QEDE(Z > Zc) = QEDE(ZC) —— Cosmological constant

| —— Early dark energy

—— Total density
Q ez —Qb (1 f %)

n=1: matter, n=2: radiation, etc.
GDM: Hu astro-ph/9801234

=
S)
&

(\Il'_l
U
Q
=
X
w10
~
O
=
<

o Realized in (at least) two models:

'—I
o
®

One with oscillating potential
("axion-like”) and a simple linear

potential
104 10° 10° 107
VP++1806.10608; Karwal, VP++(in prep) z
plot by T. Karwal

o This allows us to treat perturbations in the fluid consistently: this is essential to the

success of the solution. background only: Karwal&Kamionkowski 1608.01309
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We also include linear perturbations!

. . k2
¢1+3H(/51—|— (a_2_|_vu) ¢1 1 hour

= (A+3H, — k/aB)do — 2AV’

WKB approx.
fluid with c2, c.2 & w

exact KG solution
approx. fluid solution

0> 10*% 10 102 100' 100"
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Perturbations are important

_— full dynamics AC)T
" —— no perturbations C; '(ACDM)

no perturbations: Karwal&Kamionkowski 1608.01309
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FKarly Dark Energy In Cosmological Data?

o CMB+BAO+Pantheon+SHOES
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FKarly Dark Energy In Cosmological Data?

=2
v CMB+BAO+Pantheon+SHOES B -
B 0 =3

ACDM

0.04 0.08 0.12 —40-36-32 69 72 75 T8
fepe(ac) Logy(ac) HO
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FKarly Dark Energy In Cosmological Data?

=2
v CMB+BAO+Pantheon+SHOES B -
B 0 =3

ACDM

o Forn>=2: ~20 detection

PEDE(Z,)
)= - st

Prot(Ze)

z, ~ 4000 — 7000 & ﬂ\

0.04 0.08 0.12 —40-36-32 69 72 75 T8
fepe(ac) Logy(ac) HO
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Karly Dark Energy In Cosmological Data?

N =2

v CMB+BAO+Pantheon+SHOES B -
B 0 =3
ACDM

y |

Prot(Ze)

z, ~ 4000 — 7000

o Forn >= 2: ~20 detection S P M
% |
e PEDE(Z) - / J AN
o

o strong increase in ®cdm //

0.04 0.08 0.12 —40-36-32 69 72 75 T8 0.120 0.136
fEDE(ac) LOglO(ac) HO Wedm
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Change 1n 15, 1s/tp, Peak Height -vs- ac

0.5 1

0.0 1

—0.5
0.5 1

r. = sound horizon 0.01

ro = damping scale 0.5

PH = Peak Height 0.5 -

0.0

—0.5 1
—5.0
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Change 1n 15, 1s/tp, Peak Height -vs- ac

0.5 1

0.0 1

—0.5
0.5 1

r = sound horizon 0.01

rp = damping scale 0.5
PH = Peak Height 0.5 -

0.0

—0.5 1 | | | |
—5.0 —4.5 : —3.5 —3.0

Logyg(ac)

o Favored region maximizes the r; decrease and minimizes rs/rp shift.
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0.5 1

0.0 1

—0.5
0.5 1

r = sound horizon 0.01

rp = damping scale 0.5

PH = Peak Height 0.5 -

0.0

—0.5 1 | | | |
—5.0 —4.5 : —3.5 —3.0

Logyg(ac)

o Favored region maximizes the r; decrease and minimizes rs/rp shift.

o From requiring érs~10 Mpc; 6(rs/rq)~0: Neff is disfavored; n=3 fairs slightly better.
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Change 1n 15, 1s/tp, Peak Height -vs- ac

0.5 1

0.0 1

—0.5
0.5 1

r« = sound horizon 0.0 -

rp = damping scale 0.5

PH = Peak Height 0.5 -

0.0

—0.5 1 | | | |
—5.0 —4.5 : —3.5 —3.0

Logyg(ac)

o Favored region maximizes the r; decrease and minimizes rs/rp shift.

o From requiring érs~10 Mpc; 6(rs/rq)~0: Neff is disfavored; n=3 fairs slightly better.

o Increase in Peak Height (and B.4) is compensated via increase in ®cgm.
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Some Statistics

o Slight preference for n=3. "Definite” evidence according to Jeffrey’s scale.

Datasets

ACDM

n =2

n=3

n— oo

Neff

Planck high-/
Planck low-£
Planck lensing
BAO-low z
BAO-high z
Pantheon
SHOES

2449.5
10494.7
9.2
1.7
1.8
1027.1
11.1

2445.5
10494.6
9.6
1.8
1.9
1026.9
4.7

2445.3
10493.1
10.0
2.3
2.1
1027.2
0.92

2445.9
10494.4
10.1
1.7
1.9
1027.3
4.2

2451.9
10493.8
9.8
2.7
2.0
1027.1
3.9

Total x2,,,
AXr2nin
Alog B

13995.1
0
0

13985.1
-10
-0.51

13980.8
-14.3
+2.51

13985.4
-9.7
+2.41

13991.2
-3.9
-0.44

o Planck Only: Very slight improvement.

)(}%igh_f ~ 2446.2, Xl%)w—f ~ 10495.9, )(l%msing ~ 94

V. Poulin - LUPM & JHU
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Future CMB experiments can probe the model

AC]T
C}T(ACDM)

Preliminary

81 Ho+Planck+BAO
67 - Simons Observatory+Planck

X\ 0.000 0.025 0.050 0.075 0.100 0.125

T lll}\l;ll T ' fede(ac) @A LeWIS
2 10 30

Oscillations in EE would definitely be detected by CoRE/ SO / CMB-S4
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Future HO measurements can help too

k
what if we had Planck+BAO+Pantheon+ Hy = 73.4 £+ 1 —mMpc_1

S

EDE

Ay?(Planck) = + 2

@)

m 71.48 ¢

\
68.84 | | |
\

0.04255  0.4572 168.84 71.48 74.11 0.01873 | . . \

=2

A Nqg Hy 3877  -3.666  -3.455 69.1 71.72 743001873 008164  0.1446
Logl()ac HO faxion(ac>
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Towards a new concordance model?

Planck 2013 data already hinted at accelerated expansion history around a~5*10-4!

1E-5 1E-4 1E-3  0.01 0.1 1

d
(@) = T2 [pm(@) + (@) + pa] [1+6(a)]

Hojjati, Linder, Samsing 1304.3724
Here Planck TT 2013 + WMAP EE and TE, to be confirmed with 2018 data...
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Some lessons to be learned

o If the "Hubble Tension” is confirmed by other local HO measurements, the EDE solution
represents the best possible “early-universe” solution.

o There are many open questions with the potential presence of such an EDE phase.

o Obvious “fine tuning” issues: why would it need to kick right around matter-radiation
equality? why in such amount?

V. Poulin - LUPM & JHU Stony Brook - 01/24/19




Some lessons to be learned

o If the "Hubble Tension” is confirmed by other local HO measurements, the EDE solution
represents the best possible “early-universe” solution.

o There are many open questions with the potential presence of such an EDE phase.

o Obvious “fine tuning” issues: why would it need to kick right around matter-radiation
equality? why in such amount?

ACDM already has similar issues!

o The ‘coincidence problem’: why now? Structure cannot grow in CC dominated universe.

o Hierarchy problem: why is this scale (0.002 eV)4 so different from Weak / Planck scales?
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A New Understanding Of A?

with Tenkanen, Smith, and Kamionkowski

o Accelerated expansion era might be related to each other. What if there were more
of such era to be discovered?

o ls their one field with a complicated potential or many fields with simple potentials?
e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549
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o ls their one field with a complicated potential or many fields with simple potentials?
e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549
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A New Understanding Of A?

with Tenkanen, Smith, and Kamionkowski

o Accelerated expansion era might be related to each other. What if there were more
of such era to be discovered?

o ls their one field with a complicated potential or many fields with simple potentials?
e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549
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Conclusions

o Hg from local measurement is in 3.80 tension with LCDMe-inferred value from Planck:
this tension also exists with non-SN and non-CMB data! It is a tension between our
understanding of the early and late universe.

o This tension can be recast as a sound-horizon tension: CMB rstoo high by 10Mpc.
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o Hg from local measurement is in 3.80 tension with LCDMe-inferred value from Planck:
this tension also exists with non-SN and non-CMB data! It is a tension between our
understanding of the early and late universe.

o This tension can be recast as a sound-horizon tension: CMB rstoo high by 10Mpc.

o A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z.)~5% and
diluting faster than radiation later can solve the Hubble tension.

o CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
“Definite” evidence for n>=3 in Bayesian terms.
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o A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z.)~5% and
diluting faster than radiation later can solve the Hubble tension.

o CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
“Definite” evidence for n>=3 in Bayesian terms.

o Future CMB / LSS / HO measurements will be able to test this scenario.
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Conclusions

o Hg from local measurement is in 3.80 tension with LCDMe-inferred value from Planck:
this tension also exists with non-SN and non-CMB data! It is a tension between our
understanding of the early and late universe.

o This tension can be recast as a sound-horizon tension: CMB rstoo high by 10Mpc.

o A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z.)~5% and
diluting faster than radiation later can solve the Hubble tension.

o CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
“Definite” evidence for n>=3 in Bayesian terms.

o Future CMB / LSS / HO measurements will be able to test this scenario.

o If this is the “correct” solution: there might be new ways of interpreting A and inflation.
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And the winner 1s?

Thank youl
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Should we detect 5% EDE with Planck?

—— real data
—— fake data

0.06433 }

0.01056 } ot

-3.907 -3.453 -$7.82 71.01 74.20.01056 0.06433 0.1181
LOglOaC HO faxion(ac>

Fiducial = best fit model with EDE. Optlmlstlc Planck + SHOES cannot see it at >2$|g
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How does CMB data measure HO?

V. Poulin - LUPM & JHU Stoﬂ%(])ggroofg)kﬁ 0 L34
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How does CMB data measure HO?

o physical scale: pre-recombination physics;
DOES NOT depend on Hy, but on physical
densities wy
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How does CMB data measure HO?

o physical scale: pre-recombination physics;
DOES NOT depend on Hy, but on physical
densities wy

/'

o angular diameter distance:

post-recombination physics da > wy035H(0-2
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How does CMB data measure HO?

o physical scale: pre-recombination physics;
DOES NOT depend on Hy, but on physical
densities wy

/'

o angular diameter distance:

post-recombination physics da > wy035H(0-2

Planck
2018

0.112 0.120 0.128
Qch2
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How does CMB data measure HO?

o physical scale: pre-recombination physics;
DOES NOT depend on Hy, but on physical
densities wy

/'

o angular diameter distance:

post-recombination physics da > wy035H(0-2

o Measurements of the absolute Peak Height
and Peak Height ratios allow to measure
wp, wm and infer a value of HO.
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How does CMB data measure HO?

o physical scale: pre-recombination physics;
DOES NOT depend on Hy, but on physical
densities wy

T

o angular diameter distance:

post-recombination physics da > wy035H(0-2

o Measurements of the absolute Peak Height
and Peak Height ratios allow to measure
wp, wm and infer a value of HO.

V. Poulin - LUPM & JHU
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Planck
2018

0.112 0.120 0.128
Qch2
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lypical (background) dynamies of ULA

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

radiation
CDM
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http://arxiv.org/abs/arXiv:1806.10608

lypical (background) dynamies of ULA

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

. Hubble friction wins:
radiation

CDM field is frozen
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lypical (background) dynamies of ULA

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

. Hubble friction wins:
radiation

CDM field is frozen

m>3H: the field rolls down and oscillates

n=1 matter: n=2 radiation: n=3 faster than radiation

10° 10% 10°
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lypical (background) dynamies of ULA

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

. Hubble friction wins:
radiation

CDM field is frozen

m>3H: the field rolls down and oscillates

n=1 matter: n=2 radiation: n=3 faster than radiation

10° 10* 10°

Key Idea: Early Dark Energy can increase expansion rate and solve various tensions.
Once the field becomes dynamical, it dilutes away (the faster the better)!
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When 1s the WKB approximation valid?

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

Our WKB approximation requires oscillation time-scale << Hubble time-scale

The oscillation time-scale can be obtained from requiring that energy is conserved
over several oscillations (no friction).

(v
— X
H
— ——

see also Johnson and Kamionkowski, 0805.1748

{a(S—n)/(1+n) 0@ < Geq,

a6/(+n)=3/2 . 5 o,

This ratio increases with time for n < 5 during radiation domination and for n < 3
for matter domination.

The condition ® > H holding at all time requires n < 3.
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Comparison with full KG calculation

0.03 1 — with perturbations
---- without perturbations

0.00

—0.03-
0.03-

0.00

—0.03-
0.03-

0.00

—0.03-

Without perturbations, precision is >3% given Planck constraints. Planck is ~1% precise!
With perturbations, sub-percent agreement: 1h vs 1sec computation time!
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