

On The "Hubble Tension" And How To Resolve It

Vivian Poulin

LUPM (France) and Johns Hopkins University

w/ T. Smith, T. Karwal and M. Kamionkowski 1811.04083

+ D. Grin 1806.10608

Stony Brook 24 January 2019

20 years ago

V. Poulin - LUPM & JHU

10 years ago

V. Poulin - LUPM & JHU

Today

V. Poulin - LUPM & JHU

Stony Brook - 01/24/19

4

Very good agreement between all CMB data!

V. Poulin - LUPM & JHU

Stony Brook - 01/24/19

5

And also with non-CMB data!

Astonishing success of **\CDM** Cosmology

Parameter	Planck alone	Planck + BAO
$\overline{\Omega_{ m b} h^2}$	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{ m c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{MC}$	1.04092 ± 0.00031	1.04101 ± 0.00029
au	0.0544 ± 0.0073	0.0561 ± 0.0071
$\ln(10^{10}A_{\rm s})$	3.044 ± 0.014	3.047 ± 0.014
$n_{\rm s}$	0.9649 ± 0.0042	0.9665 ± 0.0038
$\overline{H_0}$	67.36 ± 0.54	67.66 ± 0.42

Planck alone 0.6% precision 1% precision 0.3% precision 13% precision 5% precision 0.5% precision 0.7% precision

e.g. 2015 data: TT +lowP reduced $\chi^2 = 1.004$

Astonishing success of **\CDM** Cosmology

Parameter	Planck alone	Planck + BAO	Plan
$\Omega_{ m b}h^2$	0.02237 ± 0.00015	0.02242 ± 0.00014	0.6%
$\Omega_{ m c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091	1%
$100\theta_{MC}$	1.04092 ± 0.00031	1.04101 ± 0.00029	0.3%
τ	0.0544 ± 0.0073	0.0561 ± 0.0071	13%
$\ln(10^{10}A_{\rm s})$	3.044 ± 0.014	3.047 ± 0.014	5% r
$n_{\rm s}$	0.9649 ± 0.0042	0.9665 ± 0.0038	0.5%
$H_0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	67.36 ± 0.54	67.66 ± 0.42	0.7%

Planck alone0.6% precision1% precision0.3% precision0.3% precision5% precision5% precision0.5% precision0.7% precision

e.g. 2015 data: TT +lowP reduced $\chi^2 = 1.004$

As precision of data has increased, a certain number of "tensions" have emerged

• S8 = $\sigma_8(\Omega_m/0.3)^{0.5}$ is higher at ~2-3 σ than that measured by low-z probes (SZ cluster count, Weak Lensing surveys CFHTLenS, KiDS, DES...)

 Amplitude of lensing potential Cl^{φφ} is higher than deduced from peak smoothing in TT/TE/EE at ~2σ.

Potentially very interesting but still very premature...

7

V. Poulin - LUPM & JHU

The Hubble Tension

3.8σ discrepancy between latest "direct" measurement from SH0ES and the value inferred from a fit of ΛCDM to *Planck* 2018

8

H0(SH0ES) = 73.52 ± 1.62 km/s/Mpc *Riess++* 1804.10655 **H0(ΛCDM) = 67.27 ± 0.60 km/s/Mpc** *Aghanim++ 1807.06209*

V. Poulin - LUPM & JHU

Outline

Is the Hubble Tension Real?

- Is it a "Hubble Tension" or "Sound Horizon" tension?
- Early Dark Energy Can Resolve The Hubble Tension
- Towards a new concordance model beyond ΛCDM?

Outline

Is the Hubble Tension Real?

- Is it a "Hubble Tension" or "Sound Horizon" tension?
- Early Dark Energy Can Resolve The Hubble Tension
- Towards a new concordance model beyond ΛCDM?

SYSTEMATICS??

V. Poulin - LUPM & JHU

Outline

Is the Hubble Tension Real?

- Is it a "Hubble Tension" or "Sound Horizon" tension?
- Early Dark Energy Can Resolve The Hubble Tension
- Towards a new concordance model beyond ΛCDM?

NEW PHYSICS??

V. Poulin - LUPM & JHU

The Distance Ladder

V. Poulin - LUPM & JHU

The Distance Ladder

V. Poulin - LUPM & JHU

The Distance Ladder

V. Poulin - LUPM & JHU

Could it be systematics in SN data?

Sources of error are numerous (non-exhaustive list):

i) measurement of parallaxes.

ii) measurement of (apparent) magnitudes.

iii) calibration issues: are SN1 really standard candles?

iv) effect of local environment: could "local, young" cepheids be different from the "old, Hubble flow" cepheids?

Could it be systematics in SN data?

Sources of error are numerous (non-exhaustive list):

i) measurement of parallaxes.

ii) measurement of (apparent) magnitudes.

iii) calibration issues: are SN1 really standard candles?

iv) effect of local environment: could "local, young" cepheids be different from the "old, Hubble flow" cepheids?

High value of H0 is supported by numerous studies, including non-SH0ES ones. Cardina++ 1611.06088, Zhang++1706.07573, Feeney++ 1707.00007, Follin&Knox 1707.01175

Environmental effects exist but cannot explain more than ~1% of the difference. Macpherson++ 1807.01714, Jones++ 1805.05911

Solution of the set of the set

Could it be systematics in SN data?

Sources of error are numerous (non-exhaustive list):

i) measurement of parallaxes.

ii) measurement of (apparent) magnitudes.

iii) calibration issues: are SN1 really standard candles?

iv) effect of local environment: could "local, young" cepheids be different from the "old, Hubble flow" cepheids?

High value of H0 is supported by numerous studies, including non-SH0ES ones. Cardina++ 1611.06088, Zhang++1706.07573, Feeney++ 1707.00007, Follin&Knox 1707.01175

Environmental effects exist but cannot explain more than ~1% of the difference. Macpherson++ 1807.01714, Jones++ 1805.05911

- Solution of the set of the set
- Exists even with non-SN data: Gravitational time delay of strongly lensed quasars is in (mild) tension with Planck. $H0 = 72.5 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Bonvin++ 1607.01790, S. Birrer++, 1809.01274

 In the (near) future: Gravitational wave standard sirens (~5 yrs) expect to get to 1km/s/Mpc.

Could it be systematics in Planck data?

 \bigcirc It is driven by residuals oscillations at I > 800 and the low-I ~30 deficit.

Addison++ 1511.00055, Planck Col. 1608.02487

 $TT + \tau$ prior, 1σ error

Could it be systematics in Planck data?

It is driven by residuals oscillations at I > 800 and the low-I ~30 deficit.

Addison++ 1511.00055, Planck Col. 1608.02487

 $TT + \tau$ prior, 1σ error

It exists with other CMB data: WMAP+SPT/ACT+BAO ~ 2.4-3.1σ with SH0ES.

12

It exists even with non-CMB data! BAO+BBN ~ 3σ with SH0ES.

Addison++ 1707.06547

V. Poulin - LUPM & JHU

H0 from the CMB is model dependent

V. Poulin - LUPM & JHU

H0 from the CMB is model dependent

Planck measurement is strongly model dependent! baseline assumes "flat" universe

V. Poulin - LUPM & JHU

Early/late universe physics are degenerate

• standard ruler in the sky: distance travelled by sound wave until recombination. • problem: only angular scale of sound horizon is accessible $\theta_s = r_s/D_A$

V. Poulin - LUPM & JHU

Early/late universe physics are degenerate

• standard ruler in the sky: distance travelled by sound wave until recombination. • problem: only angular scale of sound horizon is accessible $\theta_s = r_s/D_A$

 \odot rs pre-recombination physics: DOES NOT depend on H₀, but on physical densities ω_X

14

 \bigcirc d_A angular diameter distance: post-recombination physics. d_A ∝ ω_M-0.35H₀-0.2

V. Poulin - LUPM & JHU

How does CMB data measure H0?

• It comes from the measurement of three angular scales: ℓ_s , ℓ_d , $\ell_{eq} <=> \theta_{s}$, θ_{d} , θ_{eq}

 θ_s sound horizon at last scattering ~1.0404

V. Poulin - LUPM & JHU

How does CMB data measure H0?

• It comes from the measurement of three angular scales: ℓ_s , ℓ_d , $\ell_{eq} <=> \theta_{s}$, θ_{d} , θ_{eq}

 θ_d photon diffusion length at last scattering ~ 0.1609

How does CMB data measure H0?

• It comes from the measurement of three angular scales: ℓ_s , ℓ_d , $\ell_{eq} <=> \theta_{s}$, θ_{d} , θ_{eq}

 θ_{eq} horizon size at matter-radiation equality ~ 0.81

17

(nb: any $\theta_x = r_x/D_A$)

e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

V. Poulin - LUPM & JHU

A modified Dark-Energy sector?

• *h* increases but $d_A(z_*)$ must be kept constant: decrease Ω_{DE} at $z < z_*$

$$\theta_X \equiv \frac{r_X}{d_A}$$
 $d_A(z_*) = \int_0^{z_*} \frac{dz}{100\sqrt{\omega_M(1+z)^3 + \Omega_{DE}(z)h^2}}$

V. Poulin - LUPM & JHU

A modified Dark-Energy sector?

• *h* increases but $d_A(z_*)$ must be kept constant: decrease Ω_{DE} at $z < z_*$

$$\theta_X \equiv \frac{r_X}{d_A}$$
 $d_A(z_*) = \int_0^{z_*} \frac{dz}{100\sqrt{\omega_M(1+z)^3 + \Omega_{DE}(z)h^2}}$

Requires phantom crossing (stability of perturbations?)

V. Poulin - LUPM & JHU

A modified Dark-Energy sector?

• *h* increases but $d_A(z_*)$ must be kept constant: decrease Ω_{DE} at $z < z_*$

$$\theta_X \equiv \frac{r_X}{d_A}$$
 $d_A(z_*) = \int_0^{z_*} \frac{dz}{100\sqrt{\omega_M(1+z)^3 + \Omega_{DE}(z)h^2}}$

Requires phantom crossing (stability of perturbations?)

JLA favors "flat" expansion history / BAO favors oscillation: 2σ residual tension

V. Poulin - LUPM & JHU

The H0 tension is a r_s tension

One can deduce the co-moving sound horizon r_s from H0 and BAO r_s from CMB needs to decrease by ~ 10 Mpc

19

V. Poulin - LUPM & JHU

How to solve the Hubble tension

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

In rs receives most of its contribution close to recombination

V. Poulin - LUPM & JHU

How to solve the Hubble tension

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

In rs receives most of its contribution close to recombination

V. Poulin - LUPM & JHU

How to solve the Hubble tension

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

In rs receives most of its contribution close to recombination

V. Poulin - LUPM & JHU

How to Resolve the Hubble tension

$$r_s = \int_{\infty}^{z_*} dz \frac{c_s(z)}{H(z)}$$

V. Poulin - LUPM & JHU

How to Resolve the Hubble tension

decrease cs: DM-photon scattering? DM-b scattering?

Boddy, Gluscevic, VP++1808.00001

V. Poulin - LUPM & JHU

decrease z*: modified recombination physics?

Chiang&Slozar 1811.03624

decrease cs: DM-photon scattering? DM-b scattering?

Boddy, Gluscevic, VP++1808.00001

increase H(z): Neff? Early Dark Energy?

increase H(z): Neff? Early Dark Energy?

Neff ~ 3.5 is needed

Bernal++ 1607.05617

V. Poulin - LUPM & JHU

Neff ~ 3.5 is needed: disfavored by Planck high-l polarization and BAO

Bernal++ 1607.05617

V. Poulin - LUPM & JHU

Neff ~ 3.5 is needed: disfavored by Planck high-l polarization and BAO

21

V. Poulin - LUPM & JHU

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We use the GDM formalism with:

$$\begin{cases} \Omega_{\text{EDE}}(z \gg z_c) = \Omega_{\text{EDE}}(z_c) \\ \Omega_{\text{EDE}}(z \ll z_c) = \Omega_{\text{EDE}}^0 (1+z)^{3(w_n+1)} \end{cases}$$

n=1: matter, n=2: radiation, etc. GDM: Hu astro-ph/9801234

V. Poulin - LUPM & JHU

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We use the GDM formalism with:

 $\begin{cases} \Omega_{\text{EDE}}(z \gg z_c) = \Omega_{\text{EDE}}(z_c) \\ \Omega_{\text{EDE}}(z \ll z_c) = \Omega_{\text{EDE}}^0 (1+z)^{3(w_n+1)} \end{cases}$

n=1: matter, n=2: radiation, etc. GDM: Hu astro-ph/9801234

Realized in (at least) two models:

One with oscillating potential ("axion-like") and a simple linear potential $V(\phi) \propto \phi^{2n}$

VP++1806.10608; Karwal, **VP**++(in prep)

V. Poulin - LUPM & JHU

Stony Brook - 01/24/19

 ϕ

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We use the GDM formalism with:

 $\begin{cases} \Omega_{\text{EDE}}(z \gg z_c) = \Omega_{\text{EDE}}(z_c) \\ \Omega_{\text{EDE}}(z \ll z_c) = \Omega_{\text{EDE}}^0 (1+z)^{3(w_n+1)} \end{cases}$

n=1: matter, n=2: radiation, etc. GDM: Hu astro-ph/9801234

Realized in (at least) two models:

One with oscillating potential ("axion-like") and a simple linear potential $V(\phi) \propto \phi^{2n}$

VP++1806.10608; Karwal, **VP**++(in prep)

This allows us to treat perturbations in the fluid consistently: this is essential to the success of the solution. *background only: Karwal&Kamionkowski* 1608.01309

V. Poulin - LUPM & JHU

Perturbations are important

no perturbations: Karwal&Kamionkowski 1608.01309

V. Poulin - LUPM & JHU

V. Poulin - LUPM & JHU

CMB+BAO+Pantheon+SH0ES

V. Poulin - LUPM & JHU

V. Poulin - LUPM & JHU

V. Poulin - LUPM & JHU

Change in rs, rs/rD, Peak Height -vs- ac

V. Poulin - LUPM & JHU

Change in rs, rs/rD, Peak Height -vs- ac

Favored region maximizes the r_s decrease and minimizes r_s/r_D shift.

Change in rs, rs/rD, Peak Height -vs- ac

Favored region maximizes the r_s decrease and minimizes r_s/r_D shift.

• From requiring $\delta r_s \sim 10$ Mpc; $\delta(r_s/r_d) \sim 0$: Neff is disfavored; n=3 fairs slightly better.

26

Change in rs, rs/rD, Peak Height -vs- ac

Favored region maximizes the r_s decrease and minimizes r_s/r_D shift.

• From requiring $\delta r_s \sim 10$ Mpc; $\delta (r_s/r_d) \sim 0$: Neff is disfavored; n=3 fairs slightly better.

26

 \bigcirc Increase in Peak Height (and θ_{eq}) is compensated via increase in ω_{cdm} .

Some Statistics

Slight preference for n=3. "Definite" evidence according to Jeffrey's scale.

		0	9		N7
Datasets	ΛCDM	n=2	n=3	$n = \infty$	$N_{\rm eff}$
$Planck$ high- ℓ	2449.5	2445.5	2445.3	2445.9	2451.9
$Planck$ low- ℓ	10494.7	10494.6	10493.1	10494.4	10493.8
Planck lensing	9.2	9.6	10.0	10.1	9.8
BAO-low z	1.7	1.8	2.3	1.7	2.7
BAO-high z	1.8	1.9	2.1	1.9	2.0
Pantheon	1027.1	1026.9	1027.2	1027.3	1027.1
SH0ES	11.1	4.7	0.92	4.2	3.9
Total $\chi^2_{\rm min}$	13995.1	13985.1	13980.8	13985.4	13991.2
$\Delta\chi^2_{ m min}$	0	-10	-14.3	-9.7	-3.9
$\Delta \log B$	0	-0.51	+2.51	+2.41	-0.44

Planck Only: Very slight improvement.

 $\chi^2_{\text{high}-\ell} \simeq 2446.2, \, \chi^2_{\text{low}-\ell} \simeq 10495.9, \, \chi^2_{\text{lensing}} \simeq 9.4$

Future CMB experiments can probe the model

Oscillations in EE would definitely be detected by CoRE/ SO / CMB-S4

V. Poulin - LUPM & JHU

28

Future H0 measurements can help too

V. Poulin - LUPM & JHU

Towards a new concordance model?

Planck 2013 data already hinted at accelerated expansion history around a~5*10-4!

Hojjati, Linder, Samsing 1304.3724

Here Planck TT 2013 + WMAP EE and TE, to be confirmed with 2018 data...

V. Poulin - LUPM & JHU

Some lessons to be learned

- If the "Hubble Tension" is confirmed by other local H0 measurements, the EDE solution represents the best possible "early-universe" solution.
- O There are many open questions with the potential presence of such an EDE phase.
- Obvious "fine tuning" issues: why would it need to kick right around matter-radiation equality? why in such amount?

Some lessons to be learned

- If the "Hubble Tension" is confirmed by other local H0 measurements, the EDE solution represents the best possible "early-universe" solution.
- O There are many open questions with the potential presence of such an EDE phase.
- Obvious "fine tuning" issues: why would it need to kick right around matter-radiation equality? why in such amount?

ACDM already has similar issues!

The 'coincidence problem': why now? Structure cannot grow in CC dominated universe.

Hierarchy problem: why is this scale (0.002 eV)⁴ so different from Weak / Planck scales?

A New Understanding Of Λ ?

with Tenkanen, Smith, and Kamionkowski

Accelerated expansion era might be related to each other. What if there were more of such era to be discovered?

○ Is their one field with a complicated potential or many fields with simple potentials? e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

A New Understanding Of Λ ?

with Tenkanen, Smith, and Kamionkowski

Accelerated expansion era might be related to each other. What if there were more of such era to be discovered?

Is their one field with a complicated potential or many fields with simple potentials?

e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

A New Understanding Of Λ ?

with Tenkanen, Smith, and Kamionkowski

Accelerated expansion era might be related to each other. What if there were more of such era to be discovered?

Is their one field with a complicated potential or many fields with simple potentials?

e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

V. Poulin - LUPM & JHU

- H₀ from local measurement is in 3.8σ tension with LCDM-inferred value from Planck: this tension also exists with non-SN and non-CMB data! It is a tension between our understanding of the early and late universe.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.

- H₀ from local measurement is in 3.8σ tension with LCDM-inferred value from Planck: this tension also exists with non-SN and non-CMB data! It is a tension between our understanding of the early and late universe.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z_c)~5% and diluting faster than radiation later can solve the Hubble tension.
- CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
 "Definite" evidence for n>=3 in Bayesian terms.

- H₀ from local measurement is in 3.8σ tension with LCDM-inferred value from Planck: this tension also exists with non-SN and non-CMB data! It is a tension between our understanding of the early and late universe.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z_c)~5% and diluting faster than radiation later can solve the Hubble tension.
- CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
 "Definite" evidence for n>=3 in Bayesian terms.
- Future CMB / LSS / H0 measurements will be able to test this scenario.

- H₀ from local measurement is in 3.8σ tension with LCDM-inferred value from Planck: this tension also exists with non-SN and non-CMB data! It is a tension between our understanding of the early and late universe.
- \bigcirc This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~5000 with f(z_c)~5% and diluting faster than radiation later can solve the Hubble tension.
- CMB, BAO and Pantheon data are fitted just as well as in LCDM (or even better? TBC).
 "Definite" evidence for n>=3 in Bayesian terms.
- Future CMB / LSS / H0 measurements will be able to test this scenario.
- If this is the "correct" solution: there might be new ways of interpreting Λ and inflation.

And the winner is?

Thank you!

V. Poulin - LUPM & JHU

Back Up

V. Poulin - LUPM & JHU

Should we detect 5% EDE with Planck?

Fiducial = best fit model with EDE. Optimistic Planck + SH0ES cannot see it at >2sig.

How does CMB data measure H0?

$$\theta_X \equiv \frac{r_X}{d_A}$$

V. Poulin - LUPM & JHU

37 Stony Brook - 01/24/19 e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

physical scale: pre-recombination physics;
 DOES NOT depend on H₀, but on physical densities ω_x

$$\theta_X \equiv \frac{r_X}{d_A}$$

V. Poulin - LUPM & JHU

physical scale: pre-recombination physics;
 DOES NOT depend on H₀, but on physical densities ω_x

$$\theta_X \equiv \frac{r_X}{d_A}$$

angular diameter distance:

post-recombination physics $d_A \propto \omega_M^{-0.35} H_0^{-0.2}$

physical scale: pre-recombination physics;
 DOES NOT depend on H₀, but on physical densities ω_x

$$\theta_X \equiv \frac{r_X}{d_A}$$

angular diameter distance:

post-recombination physics $d_A \propto \omega_M^{-0.35} H_0^{-0.2}$

37 Stony Brook - 01/24/19 e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

physical scale: pre-recombination physics;
 DOES NOT depend on H₀, but on physical densities ω_x

$$\theta_X \equiv \frac{r_X}{d_A}$$

angular diameter distance:

post-recombination physics $d_A \propto \omega_M^{-0.35} H_0^{-0.2}$

 Measurements of the absolute Peak Height and Peak Height ratios allow to measure ω_b, ω_M and infer a value of H0.

V. Poulin - LUPM & JHU

³⁷ Stony Brook - 01/24/19 e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

physical scale: pre-recombination physics;
 DOES NOT depend on H₀, but on physical densities ω_x

$$\theta_X \equiv \frac{r_X}{d_A}$$

angular diameter distance:

post-recombination physics $d_A \propto \omega_M^{-0.35} H_0^{-0.2}$

 Measurements of the absolute Peak Height and Peak Height ratios allow to measure ω_b, ω_M and infer a value of H0.

V. Poulin - LUPM & JHU

³⁷ Stony Brook - 01/24/19 e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

V. Poulin - LUPM & JHU

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

V. Poulin - LUPM & JHU

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

V. Poulin - LUPM & JHU

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

V. Poulin - LUPM & JHU

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

Key Idea: Early Dark Energy can increase expansion rate and solve various tensions. Once the field becomes dynamical, it dilutes away (the faster the better)!

38

When is the WKB approximation valid?

VP, Smith, Grin, Karwal, Kamionkowski; 1806.10608

Our WKB approximation requires oscillation time-scale << Hubble time-scale</p>

The oscillation time-scale can be obtained from requiring that energy is conserved over several oscillations (no friction).

$$\frac{\varpi}{H} \propto \begin{cases} a^{(5-n)/(1+n)} & a < a_{\rm eq}, \\ a^{6/(1+n)-3/2} & a > a_{\rm eq}, \end{cases}$$

see also Johnson and Kamionkowski, 0805.1748

- This ratio increases with time for n < 5 during radiation domination and for n < 3 for matter domination.</p>
- The condition $\omega > H$ holding at all time requires n < 3.

Comparison with full KG calculation

Without perturbations, precision is >3% given Planck constraints. Planck is ~1% precise! With perturbations, sub-percent agreement: 1h vs 1sec computation time!

V. Poulin - LUPM & JHU